Dive Deep into Creativity: Your Ultimate Tumblr Experience Awaits
Coral reefs are one of the most diverse ecosystems on the planet. They’re also in serious danger. Rising ocean temperatures, pollution and other threats are pushing corals towards extinction. But there’s hope. Using techniques originally developed to look at the stars, a team of scientists at our Ames Research Center in California’s Silicon Valley have developed a way to image corals in unprecedented detail. Now, the same team has launched a citizen science project, called NeMO-Net, to classify and assess the health of coral reefs across the globe.
NeMO-Net is a coral classification game that lets you embark on a virtual research vessel and travel the oceans, analyzing actual images of corals on the sea floor. As you explore, you learn about the different types of corals and how to identify them. Your actions in-game train a supercomputer in the real world to classify corals on its own. Each classification you make will help researchers better understand how coral reefs are changing, and ultimately, find a way to save these amazing underwater worlds. Ready to play? Here’s a quick guide to getting started:
NeMO-Net is available now on the Apple App Store, and is playable on iOS devices and Mac computers, with a forthcoming release for Android systems.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On July 20, 1969, the world watched as Apollo 11 astronauts Neil Armstrong and Buzz Aldrin took their first steps on the Moon. It was a historic moment for the United States and for humanity. Until then, no human had ever walked on another world. To achieve this remarkable feat, we recruited the best and brightest scientists, engineers and mathematicians across the country. At the peak of our Apollo program, an estimated 400,000 Americans of diverse race and ethnicity worked to realize President John F. Kennedy’s vision of landing humans on the Moon and bringing them safely back to Earth. The men and women of our Ames Research Center in California’s Silicon Valley supported the Apollo program in numerous ways – from devising the shape of the Apollo space capsule to performing tests on its thermal protection system and study of the Moon rocks and soils collected by the astronauts. In celebration of the upcoming 50th anniversary of the Apollo 11 Moon landing, here are portraits of some of the people who worked at Ames in the 1960s to help make the Apollo program a success.
Hank Cole did research on the design of the Saturn V rocket, which propelled humans to the Moon. An engineer, his work at Ames often took him to Edwards Air Force Base in Southern California, where he met Neil Armstrong and other pilots who tested experimental aircraft.
Caye Johnson came to Ames in 1964. A biologist, she analyzed samples taken by Apollo astronauts from the Moon for signs of life. Although no life was found in these samples, the methodology paved the way for later work in astrobiology and the search for life on Mars.
Richard Kurkowski started work at Ames in 1955, when the center was still part of the National Advisory Committee on Aeronautics, NASA’s predecessor. An engineer, he performed wind tunnel tests on aircraft prior to his work on the Apollo program.
Mike Green started at Ames in 1965 as a computer programmer. He supported aerospace engineers working on the development of the thermal protection system for the Apollo command module. The programs were executed on some of earliest large-scale computers available at that time.
Gerhard Hahne played an important role in certifying that the Apollo spacecraft heat shield used to bring our astronauts home from the Moon would not fail. The Apollo command module was the first crewed spacecraft designed to enter the atmosphere of Earth at lunar-return velocity – approximately 24,000 mph, or more than 30 times faster than the speed of sound.
Jim Arnold arrived at Ames in 1962 and was hired to work on studying the aerothermodynamics of the Apollo spacecraft. He was amazed by the image captured by Apollo 8 astronaut Bill Anders from lunar orbit on Christmas Eve in 1968 of Earth rising from beneath the Moon’s horizon. The stunning picture would later become known as the iconic Earthrise photo.
Howard Goldstein came to Ames in 1967. An engineer, he tested materials used for the Apollo capsule heat shield, which protected the three-man crew against the blistering heat of reentry into Earth’s atmosphere on the return trip from the Moon.
Richard Johnson developed a simple instrument to analyze the total organic carbon content of the soil samples collected by Apollo astronauts from the Moon’s surface. He and his wife Caye Johnson, who is also a scientist, were at our Lunar Receiving Laboratory in Houston when the Apollo 11 astronauts returned to Earth so they could examine the samples immediately upon their arrival.
William Borucki joined Ames in 1962. He collected data on the radiation environment of the Apollo heat shield in a facility used to simulate the reentry of the Apollo spacecraft into Earth’s atmosphere.
Join us in celebrating the 50th anniversary of the Apollo 11 Moon landing and hear about our future plans to go forward to the Moon and on to Mars by tuning in to a special two-hour live NASA Television broadcast at 1 pm ET on July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Two of the three Astrobee robots are scheduled to launch to space this month from our Wallops Flight Facility in Virginia! Tune in to the launch at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Amazing 🌌✨
On July 20, 1969, the world watched as Apollo 11 astronauts Neil Armstrong and Buzz Aldrin took their first steps on the Moon. It was a historic moment for the United States and for humanity. Until then, no human had ever walked on another world. To achieve this remarkable feat, we recruited the best and brightest scientists, engineers and mathematicians across the country. At the peak of our Apollo program, an estimated 400,000 Americans of diverse race and ethnicity worked to realize President John F. Kennedy’s vision of landing humans on the Moon and bringing them safely back to Earth. The men and women of our Ames Research Center in California’s Silicon Valley supported the Apollo program in numerous ways – from devising the shape of the Apollo space capsule to performing tests on its thermal protection system and study of the Moon rocks and soils collected by the astronauts. In celebration of the upcoming 50th anniversary of the Apollo 11 Moon landing, here are portraits of some of the people who worked at Ames in the 1960s to help make the Apollo program a success.
Hank Cole did research on the design of the Saturn V rocket, which propelled humans to the Moon. An engineer, his work at Ames often took him to Edwards Air Force Base in Southern California, where he met Neil Armstrong and other pilots who tested experimental aircraft.
Caye Johnson came to Ames in 1964. A biologist, she analyzed samples taken by Apollo astronauts from the Moon for signs of life. Although no life was found in these samples, the methodology paved the way for later work in astrobiology and the search for life on Mars.
Richard Kurkowski started work at Ames in 1955, when the center was still part of the National Advisory Committee on Aeronautics, NASA’s predecessor. An engineer, he performed wind tunnel tests on aircraft prior to his work on the Apollo program.
Mike Green started at Ames in 1965 as a computer programmer. He supported aerospace engineers working on the development of the thermal protection system for the Apollo command module. The programs were executed on some of earliest large-scale computers available at that time.
Gerhard Hahne played an important role in certifying that the Apollo spacecraft heat shield used to bring our astronauts home from the Moon would not fail. The Apollo command module was the first crewed spacecraft designed to enter the atmosphere of Earth at lunar-return velocity – approximately 24,000 mph, or more than 30 times faster than the speed of sound.
Jim Arnold arrived at Ames in 1962 and was hired to work on studying the aerothermodynamics of the Apollo spacecraft. He was amazed by the image captured by Apollo 8 astronaut Bill Anders from lunar orbit on Christmas Eve in 1968 of Earth rising from beneath the Moon’s horizon. The stunning picture would later become known as the iconic Earthrise photo.
Howard Goldstein came to Ames in 1967. An engineer, he tested materials used for the Apollo capsule heat shield, which protected the three-man crew against the blistering heat of reentry into Earth’s atmosphere on the return trip from the Moon.
Richard Johnson developed a simple instrument to analyze the total organic carbon content of the soil samples collected by Apollo astronauts from the Moon’s surface. He and his wife Caye Johnson, who is also a scientist, were at our Lunar Receiving Laboratory in Houston when the Apollo 11 astronauts returned to Earth so they could examine the samples immediately upon their arrival.
William Borucki joined Ames in 1962. He collected data on the radiation environment of the Apollo heat shield in a facility used to simulate the reentry of the Apollo spacecraft into Earth’s atmosphere.
Join us in celebrating the 50th anniversary of the Apollo 11 Moon landing and hear about our future plans to go forward to the Moon and on to Mars by tuning in to a special two-hour live NASA Television broadcast at 1 pm ET on July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.