What was your fav sci-fi show/book/movie growing up?
I was a big fan of Doctor Who, and of course Star Trek!
We're about to launch a new satellite called ICON — the Ionospheric Connection Explorer — to study our planet's boundary to space.
The overlap between Earth's upper atmosphere and outer space is complicated and constantly changing. It's made up of a mix of neutral gas (like the air we breathe) and charged particles, where negatively charged electrons have separated from positively charged ions. This charged particle soup reacts uniquely to the changing electric and magnetic fields in near-Earth space, while weather conditions from here on Earth can also travel upwards and influence this region. This makes Earth's interface to space a dynamic, hard-to-predict region of the atmosphere.
Understanding what causes the changes in this region and how to predict them isn't just a matter of curiosity. Earth's boundary to space is home to many of our Earth-orbiting satellites, and it also plays a role in transmitting signals for communications and navigation systems. Unpredictable changes here can garble those signals and even shorten the lifetime of satellites.
ICON, launching on Nov. 7, will study this region with a unique combination of instruments. Orbiting about 360 miles above Earth, ICON will use its cameras to measure winds near the upper edge of Earth’s boundary to space and track atmospheric composition and temperature by studying a phenomenon called airglow. ICON also carries an instrument that will capture and measure the particles directly around the spacecraft, or in situ.
ICON is launching aboard a Northrop Grumman Pegasus XL rocket. On launch day, the Pegasus XL is carried out over the ocean by Northrop Grumman's L-1011 Stargazer aircraft, which takes off from Cape Canaveral Air Force Station in Florida. About 50 miles off the coast of Florida, the Pegasus XL drops from the plane and free-falls for about five seconds before igniting and carrying ICON into low-Earth orbit.
NASA TV coverage of the launch starts at 2:45 a.m. EST on Nov. 7 at nasa.gov/live. You can also follow along with the mission on Twitter, Facebook or at nasa.gov/icon.
Soaring over traffic in an air taxi, receiving packages faster, and participating in a sustainable, safer mode of transportation: all could be possible with a revolutionary new type of air transportation system in development called Advanced Air Mobility (AAM).
AAM could include new aircraft developed by industry, called electric vertical takeoff and landing vehicles, or eVTOLs, for use in passenger, package, or cargo delivery. It may also include new places for these aircraft to take off and land called vertiports.
Our work in Advanced Air Mobility will transform the way people and goods will move through the skies. This includes using Advanced Air Mobility for public good missions such as disaster, medical, and wildfire response.
Our vision for Advanced Air Mobility is to map out a safe, accessible, and affordable new air transportation system alongside industry, community partners, and the Federal Aviation Administration.
Once developed, passengers and cargo will travel on-demand in innovative, automated aircraft called eVTOLs, across town, between neighboring cities, or to other locations typically accessed today by car.
The addition of Advanced Air Mobility will benefit the public in several ways: easier access for travelers between rural, suburban, and urban communities; rapid package delivery; reduced commute times; disaster response, and new solutions for medical transport of passengers and supplies.
Various NASA simulation and flight testing efforts will study noise, automation, safety, vertiports, airspace development and operations, infrastructure, and ride quality, along with other focus areas like community integration.
These areas all need to be further researched before Advanced Air Mobility could be integrated into our skies. We’re helping emerging aviation markets navigate the creation of this new transportation system.
We provide various test results to the FAA to help with new policy and standards creation. We aim to give industry and the FAA recommendations for requirements to build a scalable Advanced Air Mobility system to help enable the industry to flourish by 2030.
Make sure to follow us on Tumblr for your regular dose of space!
3 … 2 … 1… ALOHA!
Sometimes in space, you have to set your clocks to island time and gather for a good Hawaiian shirt day. In this 2001 #TBT, Expedition Two and STS-100 crew members gather for a group photo with a pre-set digital still camera.
Clockwise from the 12 o'clock point in the circle are Kent V. Rominger, Yuri V. Lonchakov, Yury V. Usachev, Umberto Guidoni, James S. Voss, Jeffrey S. Ashby, Scott E. Parazynski, John L. Phillips and Chris A. Hadfield, with Susan J. Helms at center. Usachev, Helms and Voss are members of three Expedition Two crew, with the other seven serving as the STS-100 crew on the Space Shuttle Endeavour. Usachev and Lonchakov represent Rosaviakosmos; Guidoni is associated with the European Space Agency (ESA); and Hadfield is from the Canadian Space Agency (CSA).
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Our Voyager 1 spacecraft officially became the first human-made object to venture into interstellar space in 2012.
Whether and when our Voyager 1 spacecraft broke through to interstellar space, the space between stars, has been a thorny issue.
In 2012, claims surfaced every few months that Voyager 1 had “left our solar system.” Why had the Voyager team held off from saying the craft reached interstellar space until 2013?
Basically, the team needed more data on plasma, which is an ionozied gas that exists throughout space. (The glob of neon in a storefront sign is an example of plasma).
Plasma is the most important marker that distinguishes whether Voyager 1 is inside the solar bubble, known as the heliosphere. The heliosphere is defined by the constant stream of plasma that flows outward from our Sun – until it meets the boundary of interstellar space, which contains plasma from other sources.
Adding to the challenge: they didn’t know how they’d be able to detect it.
No one has been to interstellar space before, so it’s like traveling with guidebooks that are incomplete.
Additionally, Voyager 1’s plasma instrument, which measures the density, temperature and speed of plasma, stopped working in 1980, right after its last planetary flyby.
When Voyager 1 detected the pressure of interstellar space on our heliosphere in 2004, the science team didn’t have the instrument that would provide the most direct measurements of plasma.
Voyager 1 Trajectory
Instead, they focused on the direction of the magnetic field as a proxy for source of the plasma. Since solar plasma carries the magnetic field lines emanating from the Sun and interstellar plasma carries interstellar magnetic field lines, the directions of the solar and interstellar magnetic fields were expected to differ.
Voyager 2 Trajectory
In May 2012, the number of galactic cosmic rays made its first significant jump, while some of the inside particles made their first significant dip. The pace of change quickened dramatically on July 28, 2012. After five days, the intensities returned to what they had been. This was the first taste test of a new region, and at the time Voyager scientists thought the spacecraft might have briefly touched the edge of interstellar space.
By Aug. 25, when, as we now know, Voyager 1 entered this new region for good, all the lower-energy particles from inside zipped away. Some inside particles dropped by more than a factor of 1,000 compared to 2004. However, subsequent analysis of the magnetic field data revealed that even though the magnetic field strength jumped by 60% at the boundary, the direction changed less than 2 degrees. This suggested that Voyager 1 had not left the solar magnetic field and had only entered a new region, still inside our solar bubble, that had been depleted of inside particles.
Then, in April 2013, scientists got another piece of the puzzle by chance. For the first eight years of exploring the heliosheath, which is the outer layer of the heliosphere, Voyager’s plasma wave instrument had heard nothing. But the plasma wave science team had observed bursts of radio waves in 1983 and 1984 and again in 1992 and 1993. They determined these bursts were produced by the interstellar plasma when a large outburst of solar material would plow into it and cause it to oscillate.
It took about 400 days for such solar outbursts to reach interstellar space, leading to an estimated distance of 117 to 177 AU (117 to 177 times the distance from the Sun to the Earth) to the heliopause.
Then on April 9, 2013, it happened: Voyager 1’s plasma wave instrument picked up local plasma oscillations. Scientists think they probably stemmed from a burst of solar activity from a year before. The oscillations increased in pitch through May 22 and indicated that Voyager was moving into an increasingly dense region of plasma.
The above soundtrack reproduces the amplitude and frequency of the plasma waves as “heard” by Voyager 1. The waves detected by the instrument antennas can be simply amplified and played through a speaker. These frequencies are within the range heard by human ears.
When they extrapolated back, they deduced that Voyager had first encountered this dense interstellar plasma in Aug. 2012, consistent with the sharp boundaries in the charged particle and magnetic field data on Aug. 25.
In the end, there was general agreement that Voyager 1 was indeed outside in interstellar space, but that location comes with some disclaimers. They determined the spacecraft is in a mixed transitional region of interstellar space. We don’t know when it will reach interstellar space free from the influence of our solar bubble.
Voyager 1, which is working with a finite power supply, has enough electrical power to keep operating the fields and particles science instruments through at least 2020, which will make 43 years of continual operation.
Voyager 1 will continue sending engineering data for a few more years after the last science instrument is turned off, but after that it will be sailing on as a silent ambassador.
In about 40,000 years, it will be closer to the star AC +79 3888 than our own Sun.
And for the rest of time, Voyager 1 will continue orbiting around the heart of the Milky Way galaxy, with our Sun but a tiny point of light among many.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Are you ready to see unprecedented, detailed views of the universe from the James Webb Space Telescope, the largest and most powerful space observatory ever made? Scroll down to see the first full-color images and data from Webb. Unfold the universe with us. ✨
This landscape of “mountains” and “valleys” speckled with glittering stars, called the Cosmic Cliffs, is the edge of the star-birthing Carina Nebula. Usually, the early phases of star formation are difficult to capture, but Webb can peer through cosmic dust—thanks to its extreme sensitivity, spatial resolution, and imaging capability. Protostellar jets clearly shoot out from some of these young stars in this new image.
The Southern Ring Nebula is a planetary nebula: it’s an expanding cloud of gas and dust surrounding a dying star. In this new image, the nebula’s second, dimmer star is brought into full view, as well as the gas and dust it’s throwing out around it. (The brighter star is in its own stage of stellar evolution and will probably eject its own planetary nebula in the future.) These kinds of details will help us better understand how stars evolve and transform their environments. Finally, you might notice points of light in the background. Those aren’t stars—they’re distant galaxies.
Stephan’s Quintet, a visual grouping of five galaxies near each other, was discovered in 1877 and is best known for being prominently featured in the holiday classic, “It’s a Wonderful Life.” This new image brings the galaxy group from the silver screen to your screen in an enormous mosaic that is Webb’s largest image to date. The mosaic covers about one-fifth of the Moon’s diameter; it contains over 150 million pixels and is constructed from almost 1,000 separate image files. Never-before-seen details are on display: sparkling clusters of millions of young stars, fresh star births, sweeping tails of gas, dust and stars, and huge shock waves paint a dramatic picture of galactic interactions.
WASP-96 b is a giant, mostly gas planet outside our solar system, discovered in 2014. Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) measured light from the WASP-96 system as the planet moved across the star. The light curve confirmed previous observations, but the transmission spectrum revealed new properties of the planet: an unambiguous signature of water, indications of haze, and evidence of clouds in the atmosphere. This discovery marks a giant leap forward in the quest to find potentially habitable planets beyond Earth.
This image of galaxy cluster SMACS 0723, known as Webb’s First Deep Field, looks 4.6 billion years into the past. Looking at infrared wavelengths beyond Hubble’s deepest fields, Webb’s sharp near-infrared view reveals thousands of galaxies—including the faintest objects ever observed in the infrared—in the most detailed view of the early universe to date. We can now see tiny, faint structures we’ve never seen before, like star clusters and diffuse features and soon, we’ll begin to learn more about the galaxies’ masses, ages, histories, and compositions.
These images and data are just the beginning of what the observatory will find. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.
Make sure to follow us on Tumblr for your regular dose of space—and for milestones like this!
Credits: NASA, ESA, CSA, and STScI
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Earth-observing satellites, along with the cameras and crew of the International Space Station, are keeping a watchful eye over Hurricane Harvey as it churns in the Gulf of Mexico. When Hurricane Harvey blows ashore over coastal Texas on Friday night, it will likely be the first major hurricane to make landfall in the United States since 2005.
Above is a view of Harvey from NOAA's GOES-East satellite captured on Aug. 25 at 10:07 a.m. EDT (1407 UTC) clearly showing the storm’s eye as Harvey nears landfall in the southeastern coast of Texas. As Hurricane Harvey continued to strengthen, we analyzed the storm’s rainfall, cloud heights and cloud top temperatures.
Above, the Global Precipitation Mission (GPM) core observatory satellite flew almost directly above intensifying Hurricane Harvey on August 24, 2017 at 6:30 p.m. EDT (2230 UTC) and we used the Microwave Imager instrument to peer through dense storm clouds to reveal the location of intense rainfall bands near the center of the hurricane.
And from the International Space Station, cameras were pointed towards Harvey as the orbiting laboratory passed overhead 250 miles above the Earth. The video above includes views from the space station recorded on August 24, 2017 at 6:15 p.m. Eastern Time.
The National Hurricane Center expects Harvey to be a category 3 storm on the Saffir-Simpson scale—with winds higher than 111 miles (179 kilometers) per hour—when it makes landfall. It will likely produce a storm surge of 6 to 12 feet (2 to 4 meters) and drop between 15 and 25 inches (38 and 63 centimeters) of rain in some areas—enough to produce life-threatening flash floods.
For updated forecasts, visit the National Hurricane Center. Ensure you are prepared for Hurricanes. Get tips and more at FEMA’s Ready site. Get the latest updates from NASA satellites by visiting our Hurricane site.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
One thing astronauts have to be good at: living in confined spaces for long periods of time.
Nearly 20 years successfully living on the International Space Station and more than 50 flying in space did not happen by accident. Our astronauts and psychologists have examined what human behaviors create a healthy culture for living and working remotely in small groups. They narrowed it to five general skills and defined the associated behaviors for each skill.
For many of us in a similar scenario, here are the skills as shared by astronaut Anne McClain:
Share information and feelings freely.
Talk about your intentions before taking action.
Discuss when your or others’ actions were not as expected.
Take time to debrief after success or conflict.
Admit when you are wrong.
Balance work, rest, and personal time. Be organized.
Realistically assess your own strengths and weaknesses, and their influence on the group.
Identify personal tendencies and their influence on your success or failure. Learn from mistakes.
Be open about your weaknesses and feelings.
Take action to mitigate your own stress or negativity (don't pass it on to the group).
Demonstrate patience and respect. Encourage others.
Monitor your team (or friends and family) for signs of stress or fatigue.
Encourage participation in team (or virtual) activities.
Volunteer for the unpleasant tasks. Offer and accept help.
Share credit; take the blame.
Cooperate rather than compete.
Actively cultivate group culture (use each individual's culture to build the whole).
Respect roles, responsibilities and workload.
Take accountability; give praise freely. Then work to ensure a positive team attitude.
Keep calm in conflict.
Accept responsibility.
Adjust your style to your environment.
Assign tasks and set goals.
Lead by example. Give direction, information, feedback, coaching and encouragement.
Talk when something isn’t right. Ask questions.
We are all in this together on this spaceship we call Earth! These five skills are just reminders to help cultivate good mental and physical health while we all adjust to being indoors. Take care of yourself and dive deeper into these skills HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Location: In the Scorpius constellation
Distance from Earth: About 44,000 light-years
Object type: Globular star cluster
Discovered by: James Dunlop in 1826
Each tiny point of light in this image is its own star - and there are more than a million of them! This stunning image captured by the Hubble Telescope depicts NGC 6441, a globular cluster that weighs about 1.6 million times the mass of our Sun. Globular clusters like NGC 6441 are groups of old stars held together by their mutual gravitational attraction, appearing nearly spherical in shape due to the density of stars that comprises them. This particular cluster is one of the most massive and luminous in our Milky Way Galaxy. It is also home to a planetary nebula and four pulsars (rotating neutron stars that emit beams of radiation at steady intervals, detected when the beams are aimed at Earth).
Read more information about NGC 6441 here.
Right now, the Hubble Space Telescope is delving into its #StarrySights campaign! Find more star cluster content and spectacular new images by following along on Hubble’s Twitter, Facebook, and Instagram.
Make sure to follow us on Tumblr for your regular dose of space!
There’s a lot of historical and archived space footage on the internet and we’re excited to see that the public (you!) have taken it to create many other products that teach people about exploration, space and our universe. Among those products are GIFs. Those quick videos that help you express what you’re trying to say via text, or make you laugh while surfing the web.
Are space GIFs the new cat videos of the internet? Don’t know, but we sure do like them!
This GIF of the Cat Eye Nebula shows it in various wavelengths…
Followed by a GIF of a cat in space…floating in front of the Antennae galaxies...
One time, a frog actually photobombed the launch of our LADEE spacecraft…someone on the internet gave him a parachute…
Want to see what it’s like to play soccer in space? There’s a GIF for that…
There are also some beautiful GIFs looking through the Cupola window on the International Space Station…
This warped footage from the International Space Station gives us ride around the Earth…
While this one encourages us to explore the unknown...
When our New Horizons spacecraft flew by dwarf planet Pluto in 2015, the internet couldn’t get enough of the Pluto GIFs...
Want to use our GIFs?! You can! Our GIFs are accessible directly from the Twitter app. Just tap or click the GIF button in the Twitter tool bar, search for NASAGIF, and all NASA GIFs will appear for sharing and tweeting. Enjoy!
GIF Sources
Cat Eye GIF: https://giphy.com/gifs/astronomy-cZpDWjSlKjWPm Cat GIF: https://giphy.com/gifs/cat-HopYL0SamcCli Frog GIF: https://giphy.com/gifs/nasa-photo-rocket-NOsCSDT2rUgfK Soccer GIF: https://giphy.com/gifs/yahoo-astronauts-zerogravity-QF1ZomA11zofC Cupola 1 GIF: https://giphy.com/gifs/nasa-Mcoxp6TgvQm6A Cupola 2 GIF: https://giphy.com/gifs/timelapse-space-11f3o8D2rQWzCM Earth GIF: http://giphy.com/gifs/earth-milky-way-international-space-station-ONC6WgECm5KEw Explore GIF: https://giphy.com/gifs/text-timelapse-lapse-Vj7gwAvhgsDYs Pluto 1 GIF: https://giphy.com/gifs/l46CzjUnYFfeMXiNO Pluto 2 GIF: https://giphy.com/gifs/pluto-dbV1LkFWWob84
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts