Do you ever look up at the night sky and get lost in the stars? Maybe while you’re stargazing, you spot some of your favorite constellations. But did you know there’s more to constellations than meets the eye? They’re not just a bunch of imaginary shapes made up of stars — constellations tell us stories about the universe from our perspective on Earth.
A constellation is a named pattern of stars that looks like a particular shape. Think of it like connecting the dots. If you join the dots — stars, in this case — and use your imagination, the picture would look like an object, animal, or person. For example, the ancient Greeks believed an arrangement of stars in the sky looked like a giant hunter with a sword attached to his belt, so they named it after a famous hunter in their mythology, Orion. It’s one of the most recognizable constellations in the night sky and can be seen around the world. The easiest way to find Orion is to go outside on a clear night and look for three bright stars close together in an almost-straight line. These three stars represent Orion's belt. Two brighter stars to the north mark his shoulders, and two more to the south represent his feet.
Credit: NASA/STScI
Over time, cultures around the world have had different names and numbers of constellations depending on what people thought they saw. Today, there are 88 officially recognized constellations. Though these constellations are generally based on what we can see with our unaided eyes, scientists have also invented unofficial constellations for objects that can only be seen in gamma rays, the highest-energy form of light.
The stars in constellations may look close to each other from our point of view here on Earth, but in space they might be really far apart. For example, Alnitak, the star at the left side of Orion's belt, is about 800 light-years away. Alnilam, the star in the middle of the belt, is about 1,300 light-years away. And Mintaka, the star at the right side of the belt, is about 900 light-years away. Yet they all appear from Earth to have the same brightness. Space is three-dimensional, so if you were looking at the stars that make up the constellation Orion from another part of our galaxy, you might see an entirely different pattern!
Now that we know a little bit more about constellations, let’s talk about the supercool cosmic objects that form them – stars! Though over a dozen stars make up Orion, two take center stage. The red supergiant Betelgeuse (Orion's right shoulder) and blue supergiant Rigel (Orion's left foot) stand out as the brightest members in the constellation.
Credit: Derrick Lim
Betelgeuse is a young star by stellar standards, about 10 million years old, compared to our nearly 5 billion-year-old Sun. The star is so huge that if it replaced the Sun at the center of our solar system, it would extend past the main asteroid belt between Mars and Jupiter! But due to its giant mass, it leads a fast and furious life.
Betelgeuse is destined to end in a supernova blast. Scientists discovered a mysterious dimming of Betelgeuse in late 2019 caused by a traumatic outburst that some believed was a precursor to this cosmic event. Though we don’t know if this incident is directly related to an imminent supernova, there’s a tiny chance it might happen in your lifetime. But don't worry, Betelgeuse is about 550 light-years away, so this event wouldn't be dangerous to us – but it would be a spectacular sight.
Rigel is also a young star, estimated to be 8 million years old. Like Betelgeuse, Rigel is much larger and heavier than our Sun. Its surface is thousands of degrees hotter than Betelgeuse, though, making it shine blue-white rather than red. These colors are even noticeable from Earth. Although Rigel is farther from Earth than Betelgeuse (about 860 light-years away), it is intrinsically brighter than its companion, making it the brightest star in Orion and one of the brightest stars in the night sky.
Credit: Rogelio Bernal Andreo
Some dots that make up constellations are actually more than one star, but from a great distance they look like a single object. Remember Mintaka, the star at the far right side of Orion's belt? It is not just a single star, but actually five stars in a complex star system.
Credit: X-ray: NASA/CXC/GSFC/M. Corcoran et al.; Optical: Eckhard Slawik
Below the three bright stars of Orion’s belt lies his sword, where you can find the famous Orion Nebula. The nebula is only 1,300 light-years away, making it the closest large star-forming region to Earth. Because of its brightness and prominent location just below Orion’s belt, you can actually spot the Orion Nebula from Earth! But with a pair of binoculars, you can get a much more detailed view of the stellar nursery. It’s best visible in January and looks like a fuzzy “star” in the middle of Orion’s sword.
In addition to newborn stars, Orion also has some other awesome cosmic objects hanging around. Scientists have discovered exoplanets, or planets outside of our solar system, orbiting stars there. One of those planets is a giant gas world three times more massive than Jupiter. It’s estimated that on average there is at least one planet for every star in our galaxy. Just think of all the worlds you may be seeing when you look up at the night sky!
It’s also possible that the Orion Nebula might be home to a black hole, making it the closest known black hole to Earth. Though we may never detect it, because no light can escape black holes, making them invisible. However, space telescopes with special instruments can help find black holes. They can observe the behavior of material and stars that are very close to black holes, helping scientists find clues that can lead them closer to discovering some of these most bizarre and fascinating objects in the cosmos.
Next time you go stargazing, remember that there’s more to the constellations than meets the eye. Let them guide you to some of the most incredible and mysterious objects of the cosmos — young stars, brilliant nebulae, new worlds, star systems, and even galaxies!
To keep up with the most recent stellar news, follow NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
As the Spitzer Space Telescope’s 16-year mission ends, we’re celebrating the legacy of our infrared explorer. It was one of four Great Observatories – powerful telescopes also including Hubble, Chandra and Compton – designed to observe the cosmos in different parts of the electromagnetic spectrum.
The part of the spectrum we can see is called, predictably, visible light. But that’s just a small segment of all the wavelengths of the spectrum. The Hubble Space Telescope observes primarily in the visible spectrum. Our Chandra X-ray Observatory is designed to detect (you guessed it) X-ray emissions from very hot regions of the universe, like exploded stars and matter around black holes. Our Compton Gamma Ray Observatory, retired in 2000, produced the first all-sky survey in gamma rays, the most energetic and penetrating form of light.
Infrared radiation, or infrared light, is another type of energy that we can’t see but can feel as heat. All objects in the universe emit some level of infrared radiation, whether they’re hot or cold. Spitzer used its infrared instrument to make discoveries in our solar system (including Saturn’s largest ring) all the way to the edge of the universe. From stars being born to planets beyond our solar system (like the seven Earth-size exoplanets around the star TRAPPIST-1), Spitzer’s science discoveries will continue to inspire the world for years to come.
Together, the work of the Great Observatories gave us a more complete view and understanding of our universe.
Hubble and Chandra will continue exploring our universe, and next year they’ll be joined by an even more powerful observatory … the James Webb Space Telescope!
Many of Spitzer’s breakthroughs will be studied more precisely with the Webb Space Telescope. Like Spitzer, Webb is specialized for infrared light. But with its giant gold-coated beryllium mirror and nine new technologies, Webb is about 1,000 times more powerful. The forthcoming telescope will be able to push Spitzer’s science findings to new frontiers, from identifying chemicals in exoplanet atmospheres to locating some of the first galaxies to form after the Big Bang.
We can’t wait for another explorer to join our space telescope superteam!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Women who had ADHD (24%) [were more likely to have attempted suicide] compared to women who had not (3%).
Men with ADHD were also more likely to have attempted suicide compared to men without ADHD (9% vs. 2%).
Adults with ADHD were much more likely to have attempted suicide than those without (14.0% vs. 2.7%).
(Study in full)
We’re committed to exploration and discovery, journeying to the Moon, Mars, and beyond. But how do we guide our missions on their voyage among the stars? Navigation engineers lead the way!
Using complex mathematical formulas, navigation experts calculate where our spacecraft are and where they’re headed. No matter the destination, navigating the stars is a complicated challenge that faces all our missions. But, we think you’re up to the task!
Our space navigation workbook lets you explore the techniques and mathematical concepts used by navigation engineers. The book delves into groundbreaking navigation innovations like miniaturized atomic clocks, autonomous navigation technologies, using GPS signals at the Moon, and guiding missions through the solar system with X-ray emissions from pulsars — a type of neutron star. It also introduces you to experts working with NASA’s Space Communications and Navigation program at Goddard Space Flight Center in Greenbelt, Maryland.
If you’re a high schooler who dreams of guiding a rover across the rocky surface of Mars or planning the trajectory of an observer swinging around Venus en route to the Sun, this workbook is for you! Download it today and start your adventure with NASA: https://go.nasa.gov/3i7Pzqr
Are you ready to see unprecedented, detailed views of the universe from the James Webb Space Telescope, the largest and most powerful space observatory ever made? Scroll down to see the first full-color images and data from Webb. Unfold the universe with us. ✨
This landscape of “mountains” and “valleys” speckled with glittering stars, called the Cosmic Cliffs, is the edge of the star-birthing Carina Nebula. Usually, the early phases of star formation are difficult to capture, but Webb can peer through cosmic dust—thanks to its extreme sensitivity, spatial resolution, and imaging capability. Protostellar jets clearly shoot out from some of these young stars in this new image.
The Southern Ring Nebula is a planetary nebula: it’s an expanding cloud of gas and dust surrounding a dying star. In this new image, the nebula’s second, dimmer star is brought into full view, as well as the gas and dust it’s throwing out around it. (The brighter star is in its own stage of stellar evolution and will probably eject its own planetary nebula in the future.) These kinds of details will help us better understand how stars evolve and transform their environments. Finally, you might notice points of light in the background. Those aren’t stars—they’re distant galaxies.
Stephan’s Quintet, a visual grouping of five galaxies near each other, was discovered in 1877 and is best known for being prominently featured in the holiday classic, “It’s a Wonderful Life.” This new image brings the galaxy group from the silver screen to your screen in an enormous mosaic that is Webb’s largest image to date. The mosaic covers about one-fifth of the Moon’s diameter; it contains over 150 million pixels and is constructed from almost 1,000 separate image files. Never-before-seen details are on display: sparkling clusters of millions of young stars, fresh star births, sweeping tails of gas, dust and stars, and huge shock waves paint a dramatic picture of galactic interactions.
WASP-96 b is a giant, mostly gas planet outside our solar system, discovered in 2014. Webb’s Near-Infrared Imager and Slitless Spectrograph (NIRISS) measured light from the WASP-96 system as the planet moved across the star. The light curve confirmed previous observations, but the transmission spectrum revealed new properties of the planet: an unambiguous signature of water, indications of haze, and evidence of clouds in the atmosphere. This discovery marks a giant leap forward in the quest to find potentially habitable planets beyond Earth.
This image of galaxy cluster SMACS 0723, known as Webb’s First Deep Field, looks 4.6 billion years into the past. Looking at infrared wavelengths beyond Hubble’s deepest fields, Webb’s sharp near-infrared view reveals thousands of galaxies—including the faintest objects ever observed in the infrared—in the most detailed view of the early universe to date. We can now see tiny, faint structures we’ve never seen before, like star clusters and diffuse features and soon, we’ll begin to learn more about the galaxies’ masses, ages, histories, and compositions.
These images and data are just the beginning of what the observatory will find. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own Solar System.
Make sure to follow us on Tumblr for your regular dose of space—and for milestones like this!
Credits: NASA, ESA, CSA, and STScI
SHIELDS Up! NASA Rocket to Survey Our Solar System’s Windshield Apr 16, 2021
Eleven billion miles away – more than four times the distance from us to Pluto – lies the boundary of our solar system’s magnetic bubble, the heliopause. Here the Sun’s magnetic field, stretching through space like an invisible cobweb, fizzles to nothing. Interstellar space begins. “It’s really the largest boundary of its kind we can study,” said Walt Harris, space physicist at the University of Arizona in Tucson.
We still know little about what lies beyond this boundary. Fortunately, bits of interstellar space can come to us, passing right through this border and making their way into the solar system.
A new NASA mission will study light from interstellar particles that have drifted into our solar system to learn about the closest reaches of interstellar space. The mission, called the Spatial Heterodyne Interferometric Emission Line Dynamics Spectrometer, or SHIELDS, will have its first opportunity to launch aboard a suborbital rocket from the White Sands Missile Range in New Mexico on April 19, 2021.
Our entire solar system is adrift in a cluster of clouds, an area cleared by ancient supernova blasts. Astronomers call this region the Local Bubble, an oblong plot of space about 300 light-years long within the spiraling Orion arm of our Milky Way galaxy. It contains hundreds of stars, including our own Sun.
We fare this interstellar sea is our trusty vessel, the heliosphere, a much smaller (though still gigantic) magnetic bubble blown up by the Sun. As we orbit the Sun, the solar system itself, encased in the heliosphere, hurtles through the Local Bubble at about 52,000 miles per hour (23 kilometers per second). Interstellar particles pelt the nose of our heliosphere like rain against a windshield.
Our heliosphere is more like a rubber raft than a wooden sailboat: Its surroundings mold its shape. It compresses at points of pressure, expands where it gives way. Exactly how and where our heliosphere’s lining deforms gives us clues about the nature of the interstellar space outside it. This boundary – and any deformities in it – are what Walt Harris, principal investigator for the SHIELDS mission, is after.
SHIELDS is a telescope that will launch aboard a sounding rocket, a small vehicle that flies to space for a few minutes of observing time before falling back to Earth. Harris’ team launched an earlier iteration of the telescope as part of the HYPE mission in 2014, and after modifying the design, they’re ready to launch again.
SHIELDS will measure light from a special population of hydrogen atoms originally from interstellar space. These atoms are neutral, with a balanced number of protons and electrons. Neutral atoms can cross magnetic field lines, so they seep through the heliopause and into our solar system nearly unfazed – but not completely.
The small effects of this boundary crossing are key to SHIELDS’s technique. Charged particles flow around the heliopause, forming a barrier. Neutral particles from interstellar space must pass through this gauntlet, which alters their paths. SHIELDS was designed to reconstruct the trajectories of the neutral particles to determine where they came from and what they saw along the way.
A few minutes after launch, SHIELDS will reach its peak altitude of about 186 miles (300 kilometers) from the ground, far above the absorbing effect of Earth’s atmosphere. Pointing its telescope towards the nose of the heliosphere, it will detect light from arriving hydrogen atoms. Measuring how that light’s wavelength stretches or contracts reveals the particles’ speed. All told, SHIELDS will produce a map to reconstruct the shape and varying density of matter at the heliopause.
The data, Harris hopes, will help answer tantalizing questions about what interstellar space is like.
For instance, astronomers think the Local Bubble as a whole is about 1/10th as dense as most of the rest of the galaxy’s main disk. But we don’t know the details – for instance, is matter in the Local Bubble is distributed evenly, or bunched up in dense pockets surrounded by nothingness? “There’s a lot of uncertainty about the fine structure of the interstellar medium – our maps are kind of crude,” Harris said. “We know the general outlines of these clouds, but we don’t know what’s happening inside them.”
Astronomers also don’t know much about the galaxy’s magnetic field. But it should leave a mark on our heliosphere that SHIELDS can detect, compressing the heliopause in a specific way based on its strength and orientation.
Finally, learning what our current plot of interstellar space is like could be a helpful guide for the (distant) future. Our solar system is just passing through our current patch of space. In some 50,000 years, we’ll be on our way out of the Local Bubble and on to who knows what.
“We don’t really know what that other cloud is like, and we don’t know what happens when you cross a boundary into that cloud,” Harris said. “There’s a lot of interest in understanding what we’re likely to experience as our solar system makes that transition.”
Not that our solar system hasn’t done it before. Over the last four billion years, Harris explains, Earth has passed through a variety of interstellar environments. It’s just that now we’re around, with the scientific tools to document it.
“We’re just trying to understand our place in the galaxy, and where we’re headed in the future,” Harris said.
TOP IMAGE….An illustration of the heliosphere being pelted with cosmic rays from outside our solar system. Credit: NASA’s Goddard Space Flight Center/Conceptual Image Lab
LOWER IMAGE….Illustration of the Local Bubble. Credits: NASA’s Goddard Space Flight Center
"Equipped with his five senses, man explores the universe around him and calls the adventure science."
-Edwin P. Hubble