Get these deals before they are sucked into a black hole and gone forever! This “Black Hole Friday,” we have some cosmic savings that are sure to be out of this world.
Your classic black holes — the ultimate storage solution.
Galactic 5-for-1 special! Learn more about Stephan’s Quintet.
Limited-time offer game DLC! Try your hand at the Roman Space Observer Video Game, Black Hole edition, available this weekend only.
Standard candles: Exploding stars that are reliably bright. Multi-functional — can be used to measure distances in space!
Feed the black hole in your stomach. Spaghettification’s on the menu.
Act quickly before the stars in this widow system are gone!
Add some planets to your solar system! Grab our Exoplanet Bundle.
Get ready to ride this (gravitational) wave before this Black Hole Merger ends!
Be the center of attention in this stylish accretion disk skirt. Made of 100% recycled cosmic material.
Should you ever travel to a black hole? No. But if you do, here’s a free guide to make your trip as safe* as possible. *Note: black holes are never safe.
Make sure to follow us on Tumblr for your regular dose of space!
This week, we’re attending the International Consumer Electronics Show (CES), where we’re joining industrial pioneers and business leaders from across the globe to showcase our space technology. Since 1967, CES has been the place to be for next-generation innovations to get their marketplace debut.
Our technologies are driving exploration and enabling the agency’s bold new missions to extend the human presence beyond the moon, to an asteroid, to Mars and beyond. Here’s a look at five technologies we’re showing off at #CES2017:
Our Integrated Display and Environmental Awareness System (IDEAS) is an interactive optical computer that works for smart glasses. The idea behind IDEAS is to enhance real-time operations by providing augmented reality data to field engineers here on Earth and in space.
This device would allow users to see and modify critical information on a transparent, interactive display without taking their eyes or hands off the work in front of them.
This wearable technology could dramatically improve the user’s situational awareness, thus improving safety and efficiency.
For example, an astronaut could see health data, oxygen levels or even environmental emergencies like “invisible” ethanol fires right on their helmet view pane.
And while the IDEAS prototype is an innovative solution to the challenges of in-space missions, it won’t just benefit astronauts—this technology can be applied to countless fields here on Earth.
Engineers at our Ames Research Center are developing robots to work as teammates with humans.
They created a user interface called the Visual Environment for Remote Virtual Exploration (VERVE) that allows researchers to see from a robot’s perspective.
Using VERVE, astronauts on the International Space Station remotely operated the K10 rover—designed to act as a scout during NASA missions to survey terrain and collect science data to help human explorers.
This week, Nissan announced that a version of our VERVE was modified for its Seamless Autonomous Mobility (SAM), a platform for the integration of autonomous vehicles into our society. For more on this partnership: https://www.nasa.gov/ames/nisv-podcast-Terry-Fong
Did you know that we are leveraging technology from virtual and augmented reality apps to help scientists study Mars and to help astronauts in space?
The Ops Lab at our Jet Propulsion Laboratory is at the forefront of deploying these groundbreaking applications to multiple missions.
One project we’re demonstrating at CES, is how our OnSight tool—a mixed reality application developed for the Microsoft HoloLens—enables scientists to “work on Mars” together from their offices.
Supported by the Mars 2020 and Curiosity missions, it is currently in use by a pilot group of scientists for rover operations. Another HoloLens project is being used aboard the International Space Station to empower the crew with assistance when and where they need it.
At CES, we’re also using the Oculus Rift virtual reality platform to provide a tour from the launchpad at our Kennedy Space Center of our Space Launch System (SLS). SLS will be the world’s most powerful rocket and will launch astronauts in the Orion Spacecraft on missions to an asteroid and eventually to Mars. Engineers continue to make progress aimed toward delivering the first SLS rocket to Kennedy in 2018.
The Pop-Up Flat Folding Explorer Robot, PUFFER, is an origami-inspired robotic technology prototype that folds into the size of a smartphone.
It is a low-volume, low-cost enhancement whose compact design means that many little robots could be packed in to a larger “parent” spacecraft to be deployed on a planet’s surface to increase surface mobility. It’s like a Mars rover Mini-Me!
Our Remote Operated Vehicle for Education, or ROV-E, is a six-wheeled rover modeled after our Curiosity and the future Mars 2020 Rover.
It uses off-the-shelf, easily programmable computers and 3D-printed parts. ROV-E has four modes, including user-controlled driving to sensor-based hazard-avoidance and “follow me” modes. ROV-E can answer questions about Mars and follow voice commands.
ROV-E was developed by a team of interns and young, up-and-coming professionals at NASA’s Jet Propulsion Laboratory who wanted to build a Mars rover from scratch to help introduce students and the public to Science, Technology, Engineering & Mathematics (STEM) careers, planetary science and our Journey to Mars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Big news for our Nancy Grace Roman Space Telescope! Thanks to some new “shades” – an infrared filter that will help us see longer wavelengths of light – the mission will be able to spot water ice on objects in the outer solar system, see deeper into clouds of gas and dust, and peer farther across space. We’re gearing up for some super exciting discoveries!
You probably know that our solar system includes planets, the Sun, and the asteroid belt in between Mars and Jupiter – but did you know there’s another ‘belt’ of small objects out past Neptune? It’s called the Kuiper belt, and it’s home to icy bodies that were left over from when our solar system formed.
A lot of the objects there are like cosmic fossils – they haven’t changed much since they formed billions of years ago. Using its new filter, Roman will be able to see how much water ice they have because the ice absorbs specific wavelengths of infrared light, providing a “fingerprint” of its presence. This will give us a window into the solar system’s early days.
Clouds of dust and gas drift throughout our galaxy, sometimes blocking our view of the stars behind them. It’s hard for visible light to penetrate this dusty haze because the particles are the same size or even larger than the light’s wavelength. Since infrared light travels in longer waves, it hardly notices the tiny particles and can pass more easily through dusty regions.
With Roman’s new filter, we’ll be able to see through much thicker dust clouds than we could have without the upgrade. It’ll be much easier to study the structure of our home galaxy, the Milky Way.
Roman’s expanded view will also help us learn more about brown dwarfs – objects that are more massive than planets, but not massive enough to light up like stars. The mission will find them near the heart of the galaxy, where stars explode more often.
These star explosions, called supernovae, are so extreme that they create and disperse new elements. So near the center of the galaxy, there should be higher amounts of elements that aren’t as common farther away, where supernovae don’t happen as often.
Astronomers think that may affect how stars and planets form. Using the new filter, Roman will probe the composition of brown dwarfs to help us understand more.
Roman’s upgraded filter will also help us see farther across space. As light travels through our expanding universe, its wavelength becomes stretched. The longer it travels before reaching us, the longer its wavelength becomes. Roman will be able to see so far back that we could glimpse some of the first stars and galaxies that ever formed. Their light will be so stretched that it will mostly arrive as infrared instead of visible light.
We’re still not sure how the very first galaxies formed because we’ve found so few of these super rare and faint beasts. But Roman will have such a big view of the universe and sharp enough vision that it could help us find a lot more of them. Then astronomers can zoom in on them with missions like our James Webb Space Telescope for a closer look.
Roman will help us explore these cosmic questions and many more! Learn more about the mission here: https://roman.gsfc.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
June 1 marks the start of hurricane season in the Atlantic Ocean. Last year’s hurricane season saw a record-setting 30 named storms. Twelve made landfall in the United States, also a record. From space, NASA has unique views of hurricanes and works with other government agencies -- like the National Oceanographic and Atmospheric Administration (NOAA) -- to better understand individual storms and entire hurricane seasons.
Here, five ways NASA is changing hurricane science:
1. We can see storms from space
From space, we can see so much more than what’s visible to the naked eye. Among our missions, NASA and NOAA have joint satellite missions monitoring storms in natural color -- basically, what our eyes see -- as well as in other wavelengths of light, which can help identify features our eyes can’t on their own. For instance, images taken in infrared can show the temperatures of clouds, as well as allow us to track the movement of storms at night.
2. We can see inside hurricanes in 3D
If you’ve ever had a CT scan or X-ray done, you know how important 3D imagery can be to understanding what’s happening on the inside. The same concept applies to hurricanes. Our Global Precipitation Measurement mission’s radar and microwave instruments can see through storm clouds to see the precipitation structure of the storm and measure how much total rain is falling as a result of the storm. This information helps scientists understand how the storm may change over time and understand the risk of severe flooding.
We can even virtually fly through hurricanes!
3. We’re looking at how climate change affects hurricane behavior
Climate change is likely causing storms to behave differently. One change is in how storms intensify: More storms are increasing in strength quickly, a process called rapid intensification, where hurricane wind speeds increase by 35 mph (or more) in just 24 hours.
In 2020, a record-tying nine storms rapidly intensified. These quick changes in storm strength can leave communities in their path without time to properly prepare.
Researchers developed a machine learning model that could more accurately detect rapidly intensifying storms.
It’s not just about how quickly hurricanes gain strength. We’re also looking at how climate change may be causing storms to move more slowly, which makes them more destructive. These “stalled” storms can slow to just a few miles an hour, dumping rain and damaging winds on one location at a time. Hurricane Dorian, for example, stalled over Grand Bahama and left catastrophic damage in its wake. Hurricanes Harvey and Florence experienced stalling as well, both causing major flooding.
4. We can monitor damage done by hurricanes
Hurricane Maria reshaped Puerto Rico’s forests. The storm destroyed so many large trees that the overall height of the island’s forests was shortened by one-third. Measurements from the ground, the air, and space gave researchers insights into which trees were more susceptible to wind damage.
Months after Hurricane Maria, parts of Puerto Rico still didn’t have power. Using satellite data, researchers mapped which neighborhoods were still dark and analyzed demographics and physical attributes of the areas with the longest wait for power.
5. We help communities prepare for storms and respond to their aftermath
The data we collect is available for free to the public. We also partner with other federal agencies, like the Federal Emergency Management Agency (FEMA), and regional and local governments to help prepare for and understand the impacts of disasters like hurricanes.
In 2020, our Disasters Program provided data to groups in Alabama, Louisiana, and Central America to identify regions significantly affected by hurricanes. This helps identify vulnerable communities and make informed decisions about where to send resources.
The 2021 Atlantic hurricane season starts today, June 1. Our colleagues at NOAA are predicting another active season, with an above average number of named storms. At NASA, we’re developing new technology to study how storms form and behave, including ways to understand Earth as a system. Working together with our partners at NOAA, FEMA and elsewhere, we’re ready to help communities weather another year of storms.
Bonus: We see storms on other planets, too!
Earth isn’t the only planet with storms. From dust storms on Mars to rains made of glass, we study storms and severe weather on planets in our solar system and beyond. Even the Sun has storms. Jupiter’s Great Red Spot, for instance, is a hurricane-like storm larger than the entire Earth.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Almost thirty years ago, on Feb. 14, 1990, our Voyager 1 spacecraft turned back toward its home for one last look. 40 astronomical units (almost 4 billion miles) from the Sun, Voyager snapped the first-ever “family portrait” of our solar system.
One image in particular highlights our own planet’s fragility in the vast cosmic arena that we call home. This image of Earth, a tiny point of light, is contained in a camera artifact that resembles a beam of sunlight.
The late Carl Sagan referred to this image of Earth in the title of his 1994 book, Pale Blue Dot. Sagan wrote: "That's here. That's home. That's us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. … There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we've ever known.”
We placed a message aboard Voyager 1 and 2 — a kind of time capsule intended to communicate a story of our world to extraterrestrials. The Voyager message is carried by a phonograph record: a 12-inch gold-plated copper disk containing sounds and images selected to portray the diversity of life and culture on Earth.
The Golden Record includes 115 images and a variety of natural sounds, such as those made by surf, wind and thunder, birds, whales and other animals. Musical selections from different cultures and eras were also added, as well as spoken greetings from Earth-people in fifty-five languages and printed messages from President Carter.
The Golden Record represents the whole of humanity, mounted to a feat of human engineering on a long voyage through interstellar space.
You can listen to the sounds of Earth on the golden record here and take a moment to appreciate our pale blue dot.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Not a question, but I just want to say that today is my daughter Erin's 7th birthday and she's wearing her NASA shirt and I want to thank you so much for being such an amazing inspiration to my daughter, myself, and women and girls everywhere. <3
Adorable! Please continue to encourage her to reach for the stars.
Will NASA send astronauts to the moon again or any other planet within the next ten years?
@nasaorion spacecraft will launch on the Space Launch system (the largest spacecraft every built, even bigger than the Saturn V rocket!). Both are under construction @nasa currently, and this is the spacecraft that will take us beyond the low earth orbit of the International Space Station, whether that be the Moon, Mars, or beyond. We will conduct test missions with astronauts on Orion in the early 2020s, and a first mission will take us 40,000 miles beyond the Moon!
With a radius of 43,440.7 miles (69,911 kilometers), Jupiter is 11 times wider than Earth. If Earth were the size of a nickel, Jupiter would be about as big as a basketball.
Jupiter orbits our sun, and is the fifth planet from the sun at a distance of about 484 million miles (778 million km) or 5.2 Astronomical Units (AU). Earth is one AU from the sun.
One day on Jupiter takes about 10 hours (the time it takes for Jupiter to rotate or spin once). Jupiter makes a complete orbit around the sun (a year in Jovian time) in about 12 Earth years (4,333 Earth days).
Jupiter is a gas-giant planet without a solid surface. However, the planet may have a solid, inner core about the size of Earth.
Jupiter's atmosphere is made up mostly of hydrogen (H2) and helium (He).
Jupiter has 53 known moons, with an additional 14 moons awaiting confirmation of their discovery — a total of 67 moons.
All four giant planets in our solar system have ring systems and Jupiter is no exception. Its faint ring system was discovered in 1979 by the Voyager 1 mission.
Many missions have visited Jupiter and its system of moons. The Juno spacecraft is currently orbiting Jupiter.
Jupiter cannot support life as we know it. However, some of Jupiter's moons have oceans underneath their crusts that might support life.
Jupiter's Great Red Spot is a gigantic storm (about the size of Earth) that has been raging for hundreds of years.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What do hurricanes look like from space? It depends on how you look! We have satellites, cameras and instruments all working together to give us the big picture of storms like Florence.
As the International Space Station passed over Hurricane Florence, astronauts and cameras on board got a look down into the hurricane’s eye.
Our Global Precipitation Measurement (GPM) mission sees storms all around the planet by measuring rainfall. These measurements come from a constellation of satellites working together, including some from our partner organizations like the National Oceanic and Atmospheric Administration (NOAA) and the Japanese Aerospace Exploration Agency (JAXA).
On Sept. 7, our GPM core observatory satellite flew over Florence, capturing a 3D image as the storm’s clouds started to break apart before reforming.
Other NOAA satellites, like GOES, gather high-resolution, detailed views of hurricanes, letting us peek into the eye of the storm.
Zooming out a bit, the Suomi-NPP satellite helps us track Hurricane Florence, and the following tropical storms, as they move closer to landfall or dissipate over the ocean.
From farther away (a million miles from Earth!), the EPIC instrument on NOAA’s DSCOVR satellite captured images of all three of these storms as they moved closer to North America.
We use our space-based and airborne instruments to provide innovative data on hurricanes to advance scientists’ understanding of these storms. You can follow our latest views of Hurricane Florence here and get the latest forecast from NOAA’s National Hurricane Center here.
As our Cassini spacecraft made its first-ever dive through the gap between Saturn and its rings on April 26, 2017, one of its imaging cameras took a series of rapid-fire images that were used to make this movie sequence. Credits: NASA/JPL-Caltech/Space Science Institute/Hampton University
Our Cassini spacecraft has begun its final mission at Saturn. Some dates to note:
May 28, 2017: Cassini makes its riskiest ring crossing as it ventures deeper into Saturn's innermost ring (D ring).
June 29, 2017: On this day in 2004, the Cassini orbiter and its travel companion the European Space Agency's Huygens probe arrived at Saturn.
September 15, 2017: In a final, spectacular dive, Cassini will plunge into Saturn - beaming science data about Saturn's atmosphere back to Earth to the last second. It's all over at 5:08 a.m. PDT.
More about the Grand Finale
June 1, 2017: Target date of the cargo launch. The uncrewed Dragon spacecraft will launch on a Falcon 9 from Launch Complex 39A at our Kennedy Space Center in Florida. The payload includes NICER, an instrument to measure neutron stars, and ROSA, a Roll-Out Solar Array that will test a new solar panel that rolls open in space like a party favor.
More
July 4, 2017: Twenty years ago, a wagon-sized rover named Sojourner blazed the trail for future Mars explorers - both robots and, one day, humans. Take a trip back in time to the vintage Mars Pathfinder websites:
More
August 20, 2017: Forty years and still going strong, our twin Voyagers mark 40 years since they left Earth.
More
August 21, 2017: All of North America will be treated to a rare celestial event: a total solar eclipse. The path of totality runs from Oregon to South Carolina.
More
Light a candle for the man who took rocketry from science fiction to science fact. On this day in 1882, Robert H. Goddard was born in Worcester, Massachusetts.
More
October 28, 2017: Howl (or look) at the moon with the rest of the world. It's time for the annual International Observe the Moon Night.
More
December 13, 2017: Forty-five years ago, Apollo 17 astronaut Gene Cernan left the last human footprint on the moon.
More
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Floating around in zero gravity may sound like a blast, but it can actually present a lot of challenges to things we do everyday here on Earth with little to no thought. Here are a few ways that astronauts on the International Space Station complete normal tasks in orbit:
1) Washing Hair
You can’t just have a shower on the space station because the water would come out of the faucet and float all over the place. In this video, NASA Astronaut Karen Nyberg demonstrates how she uses a bag of water, no rinse shampoo, a towel and her comb to wash her hair.
2) Drinking Coffee
Believe it or not, there are special cups used on the space station to drink coffee from the new ISSpresso machine. I mean, you wouldn’t want hot coffee floating around in the air…would you? Previously, astronauts drank coffee from plastic bags, but let’s face it, that sounds pretty unenjoyable. Now, there are zero Gravity coffee cups, and an Italian espresso machine aboard the International Space Station! These cups were created with the help of capillary flow experiments conducted in space.
3) Sleeping
There’s nothing like crawling into bed after a long day, but astronauts can’t exactly do that while they’re in microgravity. Instead of beds, crew members use sleeping bags attached to the walls of their small crew cabins. They are able to zipper themselves in so that they don’t float around while they’re asleep. This may sound uncomfortable, but some astronauts, like Scott Kelly, say that they sleep better in space than they do on Earth!
4) Exercising
Exercising in general is an important part of a daily routine. In space, it even helps prevent the effects of bone and muscle loss associated with microgravity. Typically, astronauts exercise two hours per day, but the equipment they use is different than here on Earth. For example, if an astronaut wants to run on the treadmill, they have to wear a harness and bungee cords so that they don’t float away.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts