"We came all this way to explore the Moon, and the most important thing is that we discovered the Earth." - Apollo 8 astronaut Bill Anders
On Dec. 24, 1968, Anders snapped this iconic photo of "Earthrise" during the historic Apollo 8 mission. As he and fellow astronauts Frank Borman and Jim Lovell became the first humans to orbit the Moon, they witnessed Earth rising over the Moon's horizon. The image helped spark the first #EarthDay on April 22, 1970.
Anders sat down with Dr. Kate Calvin, our chief scientist and senior climate advisor, to chat about the photo, and NASA’s role in studying our home.
Make sure to follow us on Tumblr for your regular dose of space!
Since 2000, humans have continuously lived and worked on the International Space Station. That means plenty of crew members have celebrated holidays off the Earth.
Although they’re observing the same holidays, they do so in a slightly different way because of the unique environment 250 miles above the Earth.
Consider the differences of living on Earth and in space…
Food scientists must develop foods that will be easier to handle and consume in an environment without gravity. The food must not require refrigeration and also provide the nutrition humans need to remain healthy.
Freeze drying food allows it to remain stable at room temperature, while also significantly reducing its weight.
Did you know that all the food sent to the space station is precooked? Sending precooked food means that it requires no refrigeration and is either ready to eat or can be prepared by simply adding water or by heating.
The only exception are the fruit and vegetables stowed in the fresh food locker. The food comes in either freeze-dried containers or thermostabilized pouches. If freeze-dried in a vacuum sealed package, the astronauts have a rehydration system in-flight, which they use restore moisture in their food. If thermostabilized, the packaging is designed to preserve the food similar to canned products, but instead in a flexible, multi-layered pouch.
So what will the space station crew eat this year (2016) for Thanksgiving?
Turkey
Cherry/Blueberry Cobbler
Candied Yams
Rehydratable Cornbread Dressing
Rehydratable Green Beans and Mushrooms
Rehydratable Mashed Potatoes
What are you bringing to Thanksgiving on Earth this year? Treat your family and friends astronaut-style with this cornbread dressing recipe straight out of our Space Food Systems Laboratory…no freeze drying required!
For spaceflight preparation:
Baked dressing is transferred to metal tray and freeze-dried accordingly. One serving of cornbread dressing shall weigh approximately 145 g prior to freeze-drying and 50 g after freeze-drying.
Learn more about our Food Systems Laboratory in this Facebook Live video: https://www.facebook.com/ISS/videos/1359709837395277/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Monday, Oct. 17, Orbital ATK is scheduled to send new science experiments to the International Space Station.
The Cygnus spacecraft will blast off from our Wallops Flight Facility in Virginia at 7:40 p.m. EDT carrying more than 5,100 pounds of science, supplies and equipment.
Let’s take a look at a few of these experiments:
Low-temperature fires with no visible flames are known as cool flames. The Cool flames experiment examines these low-temperature combustion of droplets of a variety of fuels and additives in low gravity.
Why are we studying this? Data from this experiment could help scientists develop more efficient advanced engines and new fuels for use in space and on Earth.
Light plays a powerful role in our daily, or circadian, rhythms. Astronauts aboard the space station experience multiple cycles of light and dark every 24 hours, which, along with night shifts and the stresses of spaceflight, can affect their sleep quantity and quality.
The Lighting Effects investigation tests a new lighting system aboard the station designed to enhance crew health and keep their body clocks in proper sync with a more regular working and resting schedule.
Why are we studying this? Lighting manipulation has potential as a safe, non-pharmacological way to optimize sleep and circadian regulation on space missions. People on Earth, especially those who work night shifts, could also improve alertness and sleep by adjusting lighting for intensity and wavelength.
A user-friendly tablet app provides astronauts with a new and faster way to collect a wide variety of personal data. The EveryWear experiment tests use of this French-designed technology to record and transmit data on nutrition, sleep, exercise and medications. Astronauts use the app to complete questionnaires and keep medical and clinical logs. They wear a Smartshirt during exercise that records heart activity and body positions and transmits these data to the app. Finally, rather than manually recording everything that they eat, crew members scan barcodes on food packets to collect real-time nutritional data.
Why are we studying this? EveryWear has the potential for use in science experiments, biomedical support and technology demonstrations.
Outside the Earth’s magnetic field, astronauts are exposed to space radiation that can reduce immune response, increase cancer risk and interfere with electronics.
The Fast Neutron Spectrometer (FNS) experiment will help scientists understand high-energy neutrons, part of the radiation exposure experienced by crews during spaceflight, by studying a new technique to measure electrically neutral neutron particles.
Why are we studying this? This improved measurement will help protect crews on future exploration missions, like our journey to Mars.
Ahead of launch, there will be various opportunities to learn more about the mission:
What’s on Board Science Briefing Saturday, Oct. 15 at 4 p.m. EDT Scientists and researchers will discuss some of the experiments being delivered to the station. Watch HERE.
Prelaunch News Briefing Saturday, Oct. 15 at 6 p.m. EDT Mission managers will provide an overview and status of launch operations. Watch HERE.
LAUNCH!!! Monday, Oct. 17 coverage begins at 6:45 p.m. EDT Watch live coverage and liftoff! Launch is scheduled for 7:40 p.m. EDT. Watch HERE.
Facebook Live Starting at 7:25 p.m. EDT you can stream live coverage of the launch on NASA’s Facebook page. Watch HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Hi Kate! What did you learn from your Heart Cells experiment? Sounds so interesting!
As an intense winter storm approaches the mid-Atlantic this weekend, our satellites watch from above. The storm is expected to produce a wade swath of more than 2 feet of snow in some areas.
The below supercomputer simulation crunched the data to provide a look at the flow of clouds from storm systems around the globe, including the developing blizzard across the eastern United States.
This storm won’t only have a snowy impact on the mid-Atlantic region, but will also cause severe weather in the Gulf Coast. Satellites observe extreme rainfall in the area.
Data from NASA-NOAA Suomi NPP satellite and NOAA’s GOES-East satellite are being used to create images and animation of the movement of this powerful storm. For updates, visit: http://www.nasa.gov/feature/goddard/2016/nasa-sees-major-winter-storm-headed-for-eastern-us
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Commercial Crew Program has worked with several American aerospace industry companies to facilitate the development of U.S. human spaceflight systems since 2010. The goal is to have safe, reliable and cost-effective access to and from the International Space Station and foster commercial access to other potential low-Earth orbit destinations.
We selected Boeing and SpaceX in September 2014 to transport crew to the International Space Station from the United States. These integrated spacecraft, rockets and associated systems will carry up to four astronauts on NASA missions, maintaining a space station crew of seven to maximize time dedicated to scientific research on the orbiting laboratory
We begin a new era of human spaceflight as American astronauts will once again launch on an American spacecraft and rocket from American soil to the International Space Station.
As part of our Commercial Crew Program, NASA astronauts Robert Behnken and Douglas Hurley will fly on SpaceX’s Crew Dragon spacecraft for an extended stay at the space station for the Demo-2 mission. Launch is scheduled for 4:33 p.m. EDT on Wednesday, May 27.
Demo-2 will be SpaceX’s final test flight to validate its crew transportation system, including the Crew Dragon spacecraft, Falcon 9 rocket, launch pad and operations capabilities. While docked to the space station, the crew will run tests to ensure the Crew Dragon is capable of remaining connected to the station for up to 210 days on future missions.
Our Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities for discovery on the orbiting laboratory.
The station is a critical testbed for us to understand and overcome the challenges of long-duration spaceflight. As commercial companies focus on providing human transportation services to and from low-Earth orbit, we are freed up to focus on building spacecraft and rockets for deep space missions.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
After five years traveling through space to its destination, our Juno spacecraft will arrive in orbit around Jupiter today, July 4, 2016. This video shows a peek of what the spacecraft saw as it closed in on its destination before instruments were turned off. Watch our noon EDT Pre-Orbit Insertion Briefing on NASA Television for more: https://www.nasa.gov/nasatv or http://youtube.com/nasajpl/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What do you hope to find using this new technology? When you were a kid, did you ever dream of landing on Mars? Even if you may not be visiting, tech that you have sway over is.
“When you wer a kid, did you ever dream of landing on Mars?”
Is there any other way to actually look at the eclipse (besides television/streams) without using the special eclipse glasses?
Unfortunately, you can not directly look at the eclipse without the proper eye protection https://eclipse2017.nasa.gov/safety. But there are lots of fun indirect methods that you can use. The GIF shows how you can make a pin hole projector with your hands. We also have patterns for 3D printers to make your own pin hole projector in the shape of the US or your state https://eclipse2017.nasa.gov/2d3d-printable-pinhole-projectors
solivanas: I’ve been designing a space habitat for school that rotates to provide gravity for astronauts within it. Any tips?
When our Perseverance Mars rover lands on the Red Planet on Feb. 18, 2021, it will bring along the Ingenuity helicopter.
This small-but-mighty craft is a technology demonstration that will attempt the first powered, controlled flight on another planet. Its fuselage is about the size of a tissue box, and it weighs about 4 pounds (1.8 kg) on Earth. It started out six years ago as an implausible prospect and has now passed its Earthbound tests.
Here are six things to know about Ingenuity as it nears Mars:
This Mars helicopter is known as a technology demonstration, which is a project that aims to test a new capability for the first time with a limited scope. Previous technology demonstrations include Sojourner, the first Mars rover, and the Mars Cube One (MarCO) CubeStats that flew by Mars.
Ingenuity does not carry any science instruments and is not part of Perseverance’s science mission. The only objective for this helicopter is an engineering one – to demonstrate rotorcraft flight in the thin and challenging Martian atmosphere.
Mars’ atmosphere is around 1% the density of Earth’s. Because of that lack of density, Ingenuity has rotor blades that are much larger and spin faster than a helicopter of Ingenuity’s mass here on our planet. It also must be extremely light to travel to Mars.
The Red Planet also has incredibly cold temperatures, with nights reaching minus 130 degrees Fahrenheit (-90 degrees Celsius) in Jezero Crater, where our rover and helicopter will land. Tests on Earth at the predicted temperatures indicate Ingenuity’s parts should work as designed, but the real test will be on Mars.
Ingenuity is nestled sideways under Perseverance’s belly with a cover to protect the helicopter from debris during landing. The power system on the Mars 2020 spacecraft periodically charges Ingenuity’s batteries during the journey to the Red Planet.
In the first few months after landing, Perseverance will find a safe place for Ingenuity. Our rover will shed the landing cover, rotate the helicopter so its legs face the ground and gently drop it on the Martian surface.
NASA’s Jet Propulsion Laboratory will not be able to control the helicopter with a joystick due to delays communicating with spacecraft across interplanetary distances. That means Ingenuity will make some of its own decisions based on parameters set by its engineering team on Earth.
During flight, Ingenuity will analyze sensor data and images of the terrain to ensure it stays on a flight path designed by project engineers.
Ingenuity’s team has a long list of milestones the helicopter must pass before it can take off and land in the Martian atmosphere.
Surviving the journey to and landing on Mars
Safely deploying onto the Martian surface from Perseverance’s belly
Autonomously keeping warm through those intensely cold Martian nights
Autonomously charging itself with its solar panel
Successfully communicating to and from the helicopter via the Mars Helicopter Base Station on Perseverance
The Mars helicopter intends to demonstrate technologies and first-of-its-kind operations needed for flying on Mars. If successful, these technologies and flight experience on another planet could pave the way for other advanced robotic flying vehicles.
Possible uses of a future helicopter on Mars include:
A unique viewpoint not provided by current orbiters, rovers or landers
High-definition images and reconnaissance for robots or humans
Access to terrain that is difficult for rovers to reach
Could even carry light but vital payloads from one site to another
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts