For the first time, astronomers may have detected an exoplanet candidate outside of the Milky Way galaxy. Exoplanets are defined as planets outside of our Solar System. All other known exoplanets and exoplanet candidates have been found in the Milky Way, almost all of them less than about 3,000 light-years from Earth.
This new result is based on transits, events in which the passage of a planet in front of a star blocks some of the star's light and produces a characteristic dip. Researchers used our Chandra X-ray Observatory to search for dips in the brightness of X-rays received from X-ray bright binaries in the spiral galaxy Messier 51, also called the Whirlpool Galaxy (pictured here). These luminous systems typically contain a neutron star or black hole pulling in gas from a closely orbiting companion star. They estimate the exoplanet candidate would be roughly the size of Saturn, and orbit the neutron star or black hole at about twice the distance of Saturn from the Sun.
This composite image of the Whirlpool Galaxy was made with X-ray data from Chandra and optical light from our Hubble Space Telescope.
Credit: X-ray: NASA/CXC/SAO/R. DiStefano, et al.; Optical: NASA/ESA/STScI/Grendler
Make sure to follow us on Tumblr for your regular dose of space!
Dr. Jonny Kim was selected by NASA to join the 2017 Astronaut Candidate Class. He reported for duty in August 2017 and having completed the initial astronaut candidate training is now eligible for mission assignments to the International Space Station, the Moon and eventually Mars. A U.S. Navy SEAL, Kim completed more than 100 combat operations. Kim was commissioned as a naval officer through an enlisted-to-officer program and earned his degree in mathematics at the University of San Diego and a doctorate of medicine at Harvard Medical School. Born and raised in Los Angeles, California to Korean-American immigrants, he enjoys spending time with his family, outdoor activities, academic and professional mentoring, strength training and lifelong learning.Â
Dr. Kim took some time from his job as a NASA astronaut to answer questions about his life and career! Enjoy:Â
For many reasons. I think that humans are natural explorers. There is a calling in all of us to explore the unknown, push the boundaries and redefine what is possible. Iâm drawn to the physical and mental challenges of space exploration and the teamwork required to complete such an objective. And finally, the opportunity to do something good for our country, for humanity, and to inspire the next generation of thinkers, leaders, explorers and scientists.
Iâm a big believer that people can grow stronger bonds with each other when they succeed through shared hardship. And I think that developing relationships with one another is one of the best ways to forge successful team skills to be successful in any endeavor. With that context, I can tell you that my favorite memory from astronaut training was traversing the deep canyon slots of the Utah Canyon Lands for almost 2 weeks with my classmates. We hiked trails, climbed canyons, swam through deep, dark, cold and murky waters and forged through uncertainty, all while being together. This shared hardship was not only fun, but it helped us grow closer to one another. Itâs one of the fondest memories I have when I think about my amazing classmates, and through that shared hardship, I know I can count on any one of my fellow astronauts when the going gets tough.
Donât Stop Believinâ by Journey.
I would tell myself to always follow your passion, never stature or money, because following a life of passion is long-term, sustainable and usually helps others. Be accountable for your mistakes and failures, and maintain the humility to learn from those mistakes and failures. And finally, I would caution myself that all worthwhile goals are difficult to obtain, but with the right attitude and hard work, you can accomplish anything.
Being a Naval Special Warfare Operator taught me that humans are capable of accomplishing ten times what their bodies and mind tell them. I learned there are no limits in life, and the biggest setback one can have is a poor attitude. I learned the value of strong leadership and accountability. I also learned the meaning of sacrifice, hardship, teamwork, love and compassion. All these traits helped me to develop the hard and soft skills required to be an astronaut.
This is a great question and the answer is evolving. The way we answer this question is by being thoughtful and consulting the medical communities to weigh the pros and cons of every single decision we make regarding this. Mass plays an important factor, so we have to be mindful of everything we bring and how we train for it.
It would have been my wife but she was with me when I heard the news. The first person I called was my mom.
A picture of my wife and kids.
It means that I have a duty and obligation to serve humanityâs best interests. To explore the unknown, push boundaries and redefine whatâs possible. It means I have an immense opportunity to serve as an example and inspiration to our next generation of leaders and explorers. It also means there is a hard road ahead, and when the mission calls for us, we will be ready.
An automatic watch, because the engineering behind a timepiece is a beautiful thing. An American flag, because I proudly believe and uphold the principles and ideals our country stands for. And finally, a nice journal that I can put handwritten thoughts on.
Thank you for your time, and good luck on your first spaceflight assignment!
Follow Jonny Kim on Twitter and Instagram to keep up with his life as NASA astronaut.Â
Itâs not too late to APPLY to #BeAnAstronaut! Applications close TOMORROW, March 31.Â
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Hey! I was wondering how everyone on the ISS adjusts to each otherâs culture and language. It seems like it might be hard with language barriers and other factors, to live in a confined space with people from another country. Do others try to teach you their language? Does everyone mostly speak English, or do some people speak Russian?
Observers all over the world are hoping to catch a glimpse of Comet NEOWISE before it speeds away into the depths of space, not to be seen again for another 6,800 years.Â
For those that are, or will be, tracking Comet NEOWISE there will be a few particularly interesting observing opportunities this week.Â
Over the coming days it will become increasingly visible shortly after sunset in the northwest sky.
The object is best viewed using binoculars or a small telescope, but if conditions are optimal, you may be able to see it with the naked eye. If youâre looking in the sky without the help of observation tools, Comet NEOWISE will likely look like a fuzzy star with a bit of a tail. Using binoculars will give viewers a good look at the fuzzy comet and its long, streaky tail.Â
Hereâs what to do:
Find a spot away from city lights with an unobstructed view of the sky
Just after sunset, look below the Big Dipper in the northwest sky
Each night, the comet will continue rising increasingly higher above the northwestern horizon.
There will be a special bonus for viewers observing comet NEOWISE from the northeast United States near Washington, DC. For several evenings, there will be a brief conjunction as the International Space Station will appear to fly near the comet in the northeast sky. Approximate times and locations of the conjunctions are listed below (the exact time of the conjunction and viewing direction will vary slightly based on where you are in the Washington, DC area):
July 17 : ~10:56 p.m. EDT = NEOWISE elevation: ~08°  Space Station elevation: ~14°
July 18 : ~10:08 p.m. EDT = NEOWISE elevation: ~13°  Space Station elevation: ~18°
July 19 : ~10:57 p.m. EDT = NEOWISE elevation: ~10°  Space Station elevation: ~08°
July 20 : ~10:09 p.m. EDT = NEOWISE elevation: ~17°  Space Station elevation: ~07°
It will be a late waning Moon, with the New Moon on July 20, so the viewing conditions should be good as long as the weather cooperates.Â
Comet NEOWISE is about 3 miles across and covered in soot left over from its formation near the birth of our solar system 4.6 billion years ago - a typical comet.
Comets are frozen leftovers from the formation of the solar system composed of dust, rock and ices. They range from a few miles to tens of miles wide, but as they orbit closer to the sun, they heat up and spew gases and dust into a glowing head that can be larger than a planet. This material forms a tail that stretches millions of miles.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Each month, the International Space Station focuses on an area of research. In September, the research focus was biology, encompassing cells, plants, animals, genetics, biochemistry, human physiology and more.
Benefits from this research are vast and include: combating diseases, reducing our environmental footprint, feeding the worldâs population and developing cleaner energy.
Hereâs a recap of some topics we studied this month:
Cells
Scientists studied T-cells in orbit to better understand how human immune systems change as they age. For an immune cell, the microgravity environment mimics the aging process. Because spaceflight-induced and aging-related immune suppression share key characteristics, researchers expect the results from this study will be relevant for the general population.
NASA to Napa
We raised a glass to the space station to toast how the study of plants in space led to air purification technology that keeps the air clean in wine cellars and is also used in homes and medical facilities to help prevent mold.
One-Year Mission
This month also marked the halfway point of the One-Year Mission. NASA Astronaut Scott Kelly and Roscosmos Cosmonaut Mikhail Kornienko reached the midpoint on Sept. 15. This mission will result in valuable data about human health and the effects of microgravity on the body.
Microbes
Since microbes can threaten crew health and jeopardize equipment, scientists study them on astronautsâ skin and aboard the space station. Samples like saliva, blood, perspiration and swaps of equipment are collected to determine how microgravity, environment, diet and stress affect the microorganisms.
Model Organisms
Model organisms have characteristics that allow them to easily be maintained, reproduced and studied in a laboratory. Scientists investigate roundworms, medaka fish and rodents on the station because of this reason. They can also provide insight into the basic cellular and molecular mechanisms of the human body.
For more information about research on the International Space Station, go HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our massive James Webb Space Telescope just recently emerged from about 100 days of cryogenic testing to make sure it can work perfectly at incredibly cold temperatures when itâs in deep space.Â
Webb is a giant infrared space telescope that we are currently building. It was designed to see things that other telescopes, even the amazing Hubble Space Telescope, canât see. Â
Webbâs giant 6.5-meter diameter primary mirror is part of what gives it superior vision, and itâs coated in gold to optimize it for seeing infrared light. Â
Lots of stuff in space emits infrared light, so being able to observe it gives us another tool for understanding the universe. For example, sometimes dust obscures the light from objects we want to study â but if we can see the heat they are emitting, we can still âseeâ the objects to study them.
Itâs like if you were to stick your arm inside a garbage bag. You might not be able to see your arm with your eyes â but if you had an infrared camera, it could see the heat of your arm right through the cooler plastic bag.
Credit: NASA/IPAC
With a powerful infrared space telescope, we can see stars and planets forming inside clouds of dust and gas.
We can also see the very first stars and galaxies that formed in the early universe. These objects are so far away thatâŠwell, we havenât actually been able to see them yet. Also, their light has been shifted from visible light to infrared because the universe is expanding, and as the distances between the galaxies stretch, the light from them also stretches towards redder wavelengths.Â
We call this phenomena âredshift.â Â This means that for us, these objects can be quite dim at visible wavelengths, but bright at infrared ones. With a powerful enough infrared telescope, we can see these never-before-seen objects.
We can also study the atmospheres of planets orbiting other stars. Many of the elements and molecules we want to study in planetary atmospheres have characteristic signatures in the infrared.
Because infrared light comes from objects that are warm, in order to detect the super faint heat signals of things that are really, really far away, the telescope itself has to be very cold. How cold does the telescope have to be? Webbâs operating temperature is under 50K (or -370F/-223 C). As a comparison, water freezes at 273K (or 32 F/0 C).
Because there is no atmosphere in space, as long as you can keep something out of the Sun, it will get very cold. So Webb, as a whole, doesnât need freezers or coolers - instead it has a giant sunshield that keeps it in the shade. (We do have one instrument on Webb that does have a cryocooler because it needs to operate at 7K.)
Also, we have to be careful that no nearby bright things can shine into the telescope â Webb is so sensitive to faint infrared light, that bright light could essentially blind it. The sunshield is able to protect the telescope from the light and heat of the Earth and Moon, as well as the Sun. Â
Out at what we call the Second Lagrange point, where the telescope will orbit the Sun in line with the Earth, the sunshield is able to always block the light from bright objects like the Earth, Sun and Moon.
By lots of testing on the ground before we launch it. Every piece of the telescope was designed to work at the cold temperatures it will operate at in space and was tested in simulated space conditions. The mirrors were tested at cryogenic temperatures after every phase of their manufacturing process.
The instruments went through multiple cryogenic tests at our Goddard Space Flight Center in Maryland.
Once the telescope (instruments and optics) was assembled, it even underwent a full end-to-end test in our Johnson Space Centerâs giant cryogenic chamber, to ensure the whole system will work perfectly in space. Â
It will move to Northrop Grumman where it will be mated to the sunshield, as well as the spacecraft bus, which provides support functions like electrical power, attitude control, thermal control, communications, data handling and propulsion to the spacecraft.
Learn more about the James Webb Space Telescope HERE, or follow the mission on Facebook, Twitter and Instagram.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
The 2017 Atlantic hurricane season was among the top ten most active seasons in recorded history. Our experts are exploring what made this year particularly active and the science behind some of the biggest storms to date.
After a period of 12 years without a Category 3 or higher hurricane making landfall in the U.S., Hurricane Harvey made landfall over Texas as a Category 4 hurricane this August.
Harvey was also the biggest rainfall event ever to hit the continental U.S. with estimates more than 49 inches of rain.
Data like this from our Global Precipitation Measurement Mission, which shows the amount of rainfall from the storm and temperatures within the story, are helping scientists better understand how storms develop.Â
The unique vantage point of satellites can also help first responders, and this year satellite data helped organizations map out response strategies during hurricanes Harvey, Irma and Maria. âšÂ
In addition to satellites, we use ground stations and aircraft to track hurricanes.
We also use the capabilities of satellites like Suomi NPP and others that are able to take nighttime views. In this instance, we were able to view the power outages in Puerto Rico. This allowed first responders to see where the location of impacted urban areas.
The combined effort between us, NOAA, FEMA and other federal agencies helps us understand more about how major storms develop, how they gain strength and how they affect us.Â
To learn more about how we study storms, go to www.nasa.gov/Hurricanes.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Something happened 100 years ago that changed forever the way we fly. And then the way we explore space. And then how we study our home planet. That something was the establishment of what is now NASA Langley Research Center in Hampton, Virginia. Founded just three months after America's entry into World War I, Langley Memorial Aeronautical Laboratory was established as the nation's first civilian facility focused on aeronautical research. The goal was, simply, to "solve the fundamental problems of flight."
From the beginning, Langley engineers devised technologies for safer, higher, farther and faster air travel. Top-tier talent was hired. State-of-the-art wind tunnels and supporting infrastructure was built. Unique solutions were found.
Langley researchers developed the wing shapes still used today in airplane design. Better propellers, engine cowlings, all-metal airplanes, new kinds of rotorcraft and helicopters, faster-than-sound flight - these were among Langley's many groundbreaking aeronautical advances spanning its first decades.
By 1958, Langley's governing organization, the National Advisory Committee for Aeronautics, or NACA, would become NASA, and Langley's accomplishments would soar from air into space.
Robert R. "Bob" Gilruth (1913â2000)Â
Considered the father of the U.S. manned space program.
He helped organize the Manned Spacecraft Center â now the Johnson Space Center â in Houston, Texas.Â
Gilruth managed 25 crewed spaceflights, including Alan Shepard's first Mercury flight in May 1961, the first lunar landing by Apollo 11 in July 1969, the dramatic rescue of Apollo 13 in 1970, and the Apollo 15 mission in July 1971.
Christopher C. "Chris" Kraft, Jr. (1924-)Â
Created the concept and developed the organization, operational procedures and culture of NASAâs Mission Control.
Played a vital role in the success of the final Apollo missions, the first manned space station (Skylab), the first international space docking (Apollo-Soyuz Test Project), and the first space shuttle flights.
Maxime "Max" A. Faget (1921â2004)Â
Devised many of the design concepts incorporated into all U.S. Â manned spacecraft.
The author of papers and books that laid the engineering foundations for methods, procedures and approaches to spaceflight.Â
An expert in safe atmospheric reentry, he developed the capsule design and operational plan for Project Mercury, and made major contributions to the Apollo Programâs basic command module configuration.
Caldwell Johnson (1919â2013)Â
Worked for decades with Max Faget helping to design the earliest experimental spacecraft, addressing issues such as bodily restraint and mobility, personal hygiene, weight limits, and food and water supply.Â
A key member of NASAâs spacecraft design team, Johnson established the basic layout and physical contours of Americaâs space capsules.
William H. âHewittâ Phillips (1918â2009)Â
Provided solutions to critical issues and problems associated with control of aircraft and spacecraft.Â
Under his leadership, NASA Langley developed piloted astronaut simulators, ensuring the success of the Gemini and Apollo missions. Phillips personally conceived and successfully advocated for the 240-foot-high Langley Lunar Landing Facility used for moon-landing training, and later contributed to space shuttle development, Orion spacecraft splashdown capabilities and commercial crew programs.
Katherine Johnson (1918-)Â
Was one of NASA Langleyâs most notable âhuman computers,â calculating the trajectory analysis for Alan Shepardâs May 1961 mission, Freedom 7, Americaâs first human spaceflight.Â
She verified the orbital equations controlling the capsule trajectory of John Glennâs Friendship 7 mission from blastoff to splashdown, calculations that would help to sync Project Apolloâs lunar lander with the moon-orbiting command and service module.Â
Johnson also worked on the space shuttle and the Earth Resources Satellite, and authored or coauthored 26 research reports.
Dorothy Vaughan (1910â2008)Â
Was both a respected mathematician and NASA's first African-American manager, head of NASA Langleyâs segregated West Area Computing Unit from 1949 until 1958.Â
Once segregated facilities were abolished, she joined a racially and gender-integrated group on the frontier of electronic computing.Â
Vaughan became an expert FORTRAN programmer, and contributed to the Scout Launch Vehicle Program.
William E. Stoney Jr. (1925-)Â
Oversaw the development of early rockets, and was manager of a NASA Langley-based project that created the Scout solid-propellant rocket.Â
One of the most successful boosters in NASA history, Scout and its payloads led to critical advancements in atmospheric and space science.Â
Stoney became chief of advanced space vehicle concepts at NASA headquarters in Washington, headed the advanced spacecraft technology division at the Manned Spacecraft Center in Houston, and was engineering director of the Apollo Program Office.
Israel Taback (1920â2008)Â
Was chief engineer for NASAâs Lunar Orbiter program. Five Lunar Orbiters circled the moon, three taking photographs of potential Apollo landing sites and two mapping 99 percent of the lunar surface.Â
Taback later became deputy project manager for the Mars Viking project. Seven years to the day of the first moon landing, on July 20, 1976, Viking 1 became NASAâs first Martian lander, touching down without incident in western Chryse Planitia in the planetâs northern equatorial region.
John C Houbolt (1919â2014)Â
Forcefully advocated for the lunar-orbit-rendezvous concept that proved the vital link in the nationâs successful Apollo moon landing.Â
In 1963, after the lunar-orbit-rendezvous technique was adopted, Houbolt left NASA for the private sector as an aeronautics, astronautics and advanced-technology consultant.Â
He returned to Langley in 1976 to become its chief aeronautical scientist. During a decades-long career, Houbolt was the author of more than 120 technical publications.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Take the Next Moon Step Challenge! Create an image of your footprint and tell us what you would say, in 20 words or less, if you were the next person to step foot on the Moon! Enter here: https://www.futureengineers.org/nextmoonstep
Who among us doesnât covertly read tabloid headlines when we pass them by? But if youâre really looking for a dramatic story, you might want to redirect your attention from Hollywoodâs stars to the real thing. From birth to death, these burning spheres of gas experience some of the most extreme conditions our cosmos has to offer.
All stars are born in clouds of dust and gas like the Pillars of Creation in the Eagle Nebula pictured below. In these stellar nurseries, clumps of gas form, pulling in more and more mass as time passes. As they grow, these clumps start to spin and heat up. Once they get heavy and hot enough (like, 27 million degrees Fahrenheit or 15 million degrees Celsius), nuclear fusion starts in their cores. This process occurs when protons, the nuclei of hydrogen atoms, squish together to form helium nuclei. This releases a lot of energy, which heats the star and pushes against the force of its gravity. A star is born.
Credit: NASA, ESA and the Hubble Heritage Team (STScI/AURA)
From then on, starsâ life cycles depend on how much mass they have. Scientists typically divide them into two broad categories: low-mass and high-mass stars. (Technically, thereâs an intermediate-mass category, but weâll stick with these two to keep it straightforward!)
A low-mass star has a mass eight times the Sun's or less and can burn steadily for billions of years. As it reaches the end of its life, its core runs out of hydrogen to convert into helium. Because the energy produced by fusion is the only force fighting gravityâs tendency to pull matter together, the core starts to collapse. But squeezing the core also increases its temperature and pressure, so much so that its helium starts to fuse into carbon, which also releases energy. The core rebounds a little, but the starâs atmosphere expands a lot, eventually turning into a red giant star and destroying any nearby planets. (Donât worry, though, this is several billion years away for our Sun!)
Red giants become unstable and begin pulsating, periodically inflating and ejecting some of their atmospheres. Eventually, all of the starâs outer layers blow away, creating an expanding cloud of dust and gas misleadingly called a planetary nebula. (There are no planets involved.)
Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)
All thatâs left of the star is its core, now called a white dwarf, a roughly Earth-sized stellar cinder that gradually cools over billions of years. If you could scoop up a teaspoon of its material, it would weigh more than a pickup truck. (Scientists recently found a potential planet closely orbiting a white dwarf. It somehow managed to survive the starâs chaotic, destructive history!)
A high-mass star has a mass eight times the Sunâs or more and may only live for millions of years. (Rigel, a blue supergiant in the constellation Orion, pictured below, is 18 times the Sunâs mass.)
Credit: Rogelio Bernal Andreo
A high-mass star starts out doing the same things as a low-mass star, but it doesnât stop at fusing helium into carbon. When the core runs out of helium, it shrinks, heats up, and starts converting its carbon into neon, which releases energy. Later, the core fuses the neon it produced into oxygen. Then, as the neon runs out, the core converts oxygen into silicon. Finally, this silicon fuses into iron. These processes produce energy that keeps the core from collapsing, but each new fuel buys it less and less time. By the point silicon fuses into iron, the star runs out of fuel in a matter of days. The next step would be fusing iron into some heavier element, but doing requires energy instead of releasing it. Â
The starâs iron core collapses until forces between the nuclei push the brakes, and then it rebounds back to its original size. This change creates a shock wave that travels through the starâs outer layers. The result is a huge explosion called a supernova.
Whatâs left behind depends on the starâs initial mass. Remember, a high-mass star is anything with a mass more than eight times the Sunâs â which is a huge range! A star on the lower end of this spectrum leaves behind a city-size, superdense neutron star. (Some of these weird objects can spin faster than blender blades and have powerful magnetic fields. A teaspoon of their material would weigh as much as a mountain.)
At even higher masses, the starâs core turns into a black hole, one of the most bizarre cosmic objects out there. Black holes have such strong gravity that light canât escape them. If you tried to get a teaspoon of material to weigh, you wouldnât get it back once it crossed the event horizon â unless it could travel faster than the speed of light, and we donât know of anything that can! (Weâre a long way from visiting a black hole, but if you ever find yourself near one, there are some important safety considerations you should keep in mind.)
The explosion also leaves behind a cloud of debris called a supernova remnant. These and planetary nebulae from low-mass stars are the sources of many of the elements we find on Earth. Their dust and gas will one day become a part of other stars, starting the whole process over again.
Thatâs a very brief summary of the lives, times, and deaths of stars. (Remember, thereâs that whole intermediate-mass category we glossed over!) To keep up with the most recent stellar news, follow NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
In the vastness of the universe, the life-bringing beauty of our home planet shines bright. During this tumultuous year, our satellites captured some pockets of peace, while documenting data and striking visuals of unprecedented natural disasters. As 2020 comes to a close, weâre diving into some of the devastation, wonders, and anomalies this year had to offer.Â
NASAâs fleet of Earth-observing satellites and instruments on the International Space Station unravel the complexities of the blue marble from a cosmic vantage point. These robotic scientists orbit our globe constantly, monitoring and notating changes, providing crucial information to researchers here on the ground.Â
Take a glance at 2020 through the lens of NASA satellites:
Seen from space, the icy Ili River Delta contrasts sharply with the beige expansive deserts of southeastern Kazakhstan.
When the Operational Land Imager (OLI) on Landsat 8 acquired this natural-color image on March 7, 2020, the delta was just starting to shake off the chill of winter. While many of the deltaâs lakes and ponds were still frozen, the ice on Lake Balkhash was breaking up, revealing swirls of sediment and the shallow, sandy bed of the western part of the lake.
The expansive delta and estuary is an oasis for life year round. Hundreds of plant and animal species call it home, including dozens that are threatened or endangered.Â
A record-setting and deadly fire season marred the beginning of the year in Australia. Residents of the southeastern part of the country told news media about daytime seeming to turn to night, as thick smoke filled the skies and intense fires drove people from their homes.Â
This natural-color image of Southeastern Australia was acquired on January 4, 2020, by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASAâs Aqua satellite. The smoke has a tan color, while clouds are bright white. It is likely that some of the white patches above the smoke are pyrocumulonimbus cloudsâclouds created by the convection and heat rising from a fire.
A team of scientists from NASAâs Goddard Space Flight Center (GSFC) and Universities Space Research Association (USRA) detected signs of the shutdown of business and transportation around Hubei province in central China. As reported by the U.S. State Department, Chinese authorities suspended air, road, and rail travel in the area and placed restrictions on other activities in late January 2020 in response to the COVID-19 outbreak in the region.
A research team analyzed images of Earth at night to decipher patterns of energy use, transportation, migration, and other economic and social activities. Data for the images were acquired with the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NOAAâNASA Suomi NPP satellite (launched in 2011) and processed by GSFC and USRA scientists. VIIRS has a low-light sensorâthe day/night bandâthat measures light emissions and reflections. This capability has made it possible to distinguish the intensity, types, and sources of lights and to observe how they change.
Though a seemingly serene oasis from above, there is more to this scene than meets the eye. On July 3, 2020, the Operational Land Imager (OLI) on Landsat 8 captured this false-color image of the river near Rosario, a key port city in Argentina. The combination of shortwave infrared and visible light makes it easier to distinguish between land and water. A prolonged period of unusually warm weather and drought in southern Brazil, Paraguay, and northern Argentina dropped the ParanĂĄ River to its lowest water levels in decades. The parched river basin has hampered shipping and contributed to an increase in fire activity in the delta and floodplain.
The drought has affected the region since early 2020, and low water levels have grounded several ships, and many vessels have had to reduce their cargo in order to navigate the river. With Rosario serving as the distribution hub for much of Argentinaâs soy and other farm exports, low water levels have caused hundreds of millions of dollars in losses for the grain sector, according to news reports.
Climate and fire scientists have long anticipated that fires in the U.S. West would grow larger, more intense, and more dangerous. But even the most experienced among them have been at a loss for words in describing the scope and intensity of the fires burning in West Coast states during September 2020.
Lightning initially triggered many of the fires, but it was unusual and extreme meteorological conditions that turned some of them into the worst conflagrations in the region in decades.Â
Throughout the outbreak, sensors like the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS) on the NOAA-NASA Suomi NPP satellite collected daily images showing expansive, thick plumes of aerosol particles blowing throughout the U.S. West on a scale that satellites and scientists rarely see.Â
This image shows North America on September 9th, 2020, as a frontal boundary moved into the Great Basin and produced very high downslope winds along the mountains of Washington, Oregon, and California. The winds whipped up the fires, while a pyrocumulus cloud from the Bear fire in California injected smoke high into the atmosphere. The sum of these events was an extremely thick blanket of smoke along the West Coast.
Though the bright blues of island waters are appreciated by many from a sea-level view, their true beauty is revealed when photographed from space. The underwater masterpiece photographed above is composed of sand dunes off the coast of the Bahamas.Â
The Great Bahama Bank was dry land during past ice ages, but it slowly submerged as sea levels rose. Today, the bank is covered by water, though it can be as shallow as two meters (seven feet) deep in places. The wave-shaped ripples in the image are sand on the seafloor. The curves follow the slopes of the dunes, which were likely shaped by a fairly strong current near the sea bottom. Sand and seagrass are present in different quantities and depths, giving the image itâs striking range of blues and greens.
This image was captured on February 15th, 2020, by Landsat 8, whose predecessor, Landsat 7, was the first land-use satellite to take images over coastal waters and the open ocean. Today, many satellites and research programs map and monitor coral reef systems, and marine scientists have a consistent way to observe where the reefs are and how they are faring.Â
Along with the plentiful harvest of crops in North America, one of the gifts of Autumn is the gorgeous palette of colors created by the chemical transition and fall of leaves from deciduous trees.Â
The folded mountains of central Pennsylvania were past peak leaf-peeping season but still colorful when the Operational Land Imager (OLI) on the Landsat 8 satellite passed over on November 9, 2020. The natural-color image above shows the hilly region around State College, Pennsylvania overlaid on a digital elevation model to highlight the topography of the area.
The region of rolling hills and valleys is part of a geologic formation known as the Valley and Ridge Province that stretches from New York to Alabama. These prominent folds of rock were mostly raised up during several plate tectonic collisions and mountain-building episodes in the Ordovician Period and later in the creation of Pangeaâwhen what is now North America was connected with Africa in a supercontinent. Those events created the long chain of the Appalachians, one of the oldest mountain ranges in the world.Â
Ominous and looming, a powerful storm hovered off the US coastline illuminated against the dark night hues.Â
The Visible Infrared Imaging Radiometer Suite (VIIRS) on NOAA-20 acquired this image of Hurricane Laura at 2:20 a.m. Central Daylight Time on August 26, 2020. Clouds are shown in infrared using brightness temperature data, which is useful for distinguishing cooler cloud structures from the warmer surface below. That data is overlaid on composite imagery of city lights from NASAâs Black Marble dataset.
Hurricane Laura was among the ten strongest hurricanes to ever make landfall in the United States. Forecasters had warned of a potentially devastating storm surge up to 20 feet along the coast, and the channel might have funneled that water far inland. It did not. The outcome was also a testament to strong forecasting and communication by the National Hurricane Center and local emergency management authorities in preparing the public for the hazards.
From above, the Konsen Plateau in eastern Hokkaido offers a remarkable sight: a massive grid that spreads across the rural landscape like a checkerboard, visible even under a blanket of snow. Photographed by the Operational Land Imager (OLI) on Landsat 8, this man-made design is not only aesthetically pleasing, itâs also an agricultural insulator.Â
The strips are forested windbreaksâ180-meter (590-foot) wide rows of coniferous trees that help shelter grasslands and animals from Hokkaidoâs sometimes harsh weather. In addition to blocking winds and blowing snow during frigid, foggy winters, they help prevent winds from scattering soil and manure during the warmer months in this major dairy farming region of Japan.Â
Formidable, rare, and awe-inspiring â the first and only total solar eclipse of 2020 occurred on December 14, with the path of totality stretching from the equatorial Pacific to the South Atlantic and passing through southern Argentina and Chile as shown in the lower half of the image above. The Advanced Baseline Imager (ABI) on Geostationary Operational Environmental Satellite 16 (GOES-16) captured these images of the Moonâs shadow crossing the face of Earth.Â
The âpath of totalityâ (umbral path) for the eclipse was roughly 90 kilometers (60 miles) wide and passed across South America from Saavedra, Chile, to Salina del Eje, Argentina. While a total eclipse of the Sun occurs roughly every 18 months, seeing one from any particular location on Earth is rare. On average, a solar eclipse passes over the same parcel of land roughly every 375 years. The next total solar eclipse will occur on December 4, 2021 over Antarctica, and its next appearance over North America is projected for April 8, 2024.
For additional information and a look at more images like these visit NASAâs Earth Observatory. Â
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts