Celebrating Five Years At Jupiter!

Celebrating Five Years at Jupiter!

We just released new eye-catching posters and backgrounds to celebrate the five-year anniversary of Juno’s orbit insertion at Jupiter in psychedelic style.

Celebrating Five Years At Jupiter!

On July 4, 2016, our Juno spacecraft arrived at Jupiter on a mission to peer through the gas giant planet’s dense clouds and answer questions about the origins of our solar system. Since its arrival, Juno has provided scientists a treasure trove of data about the planet’s origins, interior structures, atmosphere, and magnetosphere.

Celebrating Five Years At Jupiter!

Juno is the first mission to observe Jupiter’s deep atmosphere and interior, and will continue to delight with dazzling views of the planet’s colorful clouds and Galilean moons. As it circles Jupiter, Juno provides critical knowledge for understanding the formation of our own solar system, the Jovian system, and the role giant planets play in putting together planetary systems elsewhere.

Get the posters and backgrounds here!

For more on our Juno mission at Jupiter, follow NASA Solar System on Twitter and Facebook.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Nasa and Others

9 years ago

Blizzard 2016 from Space

As an intense winter storm approaches the mid-Atlantic this weekend, our satellites watch from above. The storm is expected to produce a wade swath of more than 2 feet of snow in some areas.

image

The below supercomputer simulation crunched the data to provide a look at the flow of clouds from storm systems around the globe, including the developing blizzard across the eastern United States.

This storm won’t only have a snowy impact on the mid-Atlantic region, but will also cause severe weather in the Gulf Coast. Satellites observe extreme rainfall in the area.

image

Data from NASA-NOAA Suomi NPP satellite and NOAA’s GOES-East satellite are being used to create images and animation of the movement of this powerful storm. For updates, visit: http://www.nasa.gov/feature/goddard/2016/nasa-sees-major-winter-storm-headed-for-eastern-us

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Farewell to the Van Allen Probes

After seven years of studying the radiation around Earth, the Van Allen Probes spacecraft have retired.

image

Originally slated for a two-year mission, these two spacecraft studied Earth's radiation belts — giant, donut-shaped clouds of particles surrounding Earth — for nearly seven years. The mission team used the last of their propellant this year to place the spacecraft into a lower orbit that will eventually decay, allowing the Van Allen Probes to re-enter and burn up in Earth's atmosphere.

image

Earth's radiation belts exist because energized charged particles from the Sun and other sources in space become trapped in our planet's huge magnetic field, creating vast regions around Earth that teem with radiation. This is one of the harshest environments in space — and the Van Allen Probes survived more than three times longer than planned orbiting through this intense region.

The shape, size and intensity of the radiation belts change, meaning that satellites — like those used for telecommunications and GPS — can be bombarded with a sudden influx of radiation. The Van Allen Probes shed new light on what invisible forces drive these changes — like waves of charged particles and electromagnetic fields driven by the Sun, called space weather. 

image

Here are a few scientific highlights from the Van Allen Probes — from the early days of the mission to earlier this year:

The Van Allen belts were first discovered in 1958, and for decades, scientists thought there were only two concentric belts. But, days after the Van Allen Probes launched, scientists discovered that during times of intense solar activity, a third belt can form.

The belts are composed of charged particles and electromagnetic fields and can be energized by different types of plasma waves. One type, called electrostatic double layers, appear as short blips of enhanced electric field. During one observing period, Probe B saw 7,000 such blips repeatedly pass over the spacecraft in a single minute!

During big space weather storms, which are ultimately caused by activity on the Sun, ions — electrically charged atoms or molecules — can be pushed deep into Earth’s magnetosphere. These particles carry electromagnetic currents that circle around the planet and can dramatically distort Earth’s magnetic field.

image

Across space, fluctuating electric and magnetic fields can create what are known as plasma waves. These waves intensify during space weather storms and can accelerate particles to incredible speeds. The Van Allen Probes found that one type of plasma wave known as hiss can contribute greatly to the loss of electrons from the belts.

The Van Allen belts are composed of electrons and ions with a range of energies. In 2015, research from the Van Allen Probes found that, unlike the outer belt, there were no electrons with energies greater than a million electron volts in the inner belt.

Plasma waves known as whistler chorus waves are also common in our near-Earth environment. These waves can travel parallel or at an angle to the local magnetic field. The Van Allen Probes demonstrated the two types of waves cannot be present simultaneously, resulting in greater radiation belt particle scattering in certain areas.

Very low frequency chorus waves, another variety of plasma waves, can pump up the energy of electrons to millions of electronvolts. During storm conditions, the Van Allen Probes found these waves can hugely increase the energy of particles in the belts in just a few hours.  

image

Scientists often use computer simulation models to understand the physics behind certain phenomena. A model simulating particles in the Van Allen belts helped scientists understand how particles can be lost, replenished and trapped by Earth’s magnetic field.

The Van Allen Probes observed several cases of extremely energetic ions speeding toward Earth. Research found that these ions’ acceleration was connected to their electric charge and not to their mass.

The Sun emits faster and slower gusts of charged particles called the solar wind. Since the Sun rotates, these gusts — the fast wind — reach Earth periodically. Changes in these gusts cause the extent of the region of cold ionized gas around Earth — the plasmasphere — to shrink. Data from the Van Allen Probes showed that such changes in the plasmasphere fluctuated at the same rate as the solar rotation — every 27 days.

Though the mission has ended, scientists will use data from the Van Allen Probes for years to come. See the latest Van Allen Probes science at nasa.gov/vanallen.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Today we successfully tested one of our RS-25 engines, four of which will help power our Space Launch System (SLS) to deep space destinations, like Mars! This 500-second engine test concludes a summer of successful hot fire testing for flight controllers at our Stennis Space Center near Bay St. Louis, Mississippi.

The controller serves as the “brain” of the engine, communicating with SLS flight computers to ensure engines are performing at needed levels. The test marked another step toward the nation’s return to human deep-space exploration missions.

We launched a series of summer tests with a second flight controller unit hot fire at the end of May, then followed up with three additional tests. The flight controller tests are critical preparation for upcoming SLS flights to deep space– the uncrewed Exploration Mission-1 (EM-1), which will serve as the first flight for the new rocket carrying an uncrewed Orion spacecraft, and EM-2, which will transport a crew of astronauts aboard the Orion spacecraft. 

Each SLS rocket is powered at launch by four RS-25 engines firing simultaneously and working in conjunction with a pair of solid rocket boosters. The engines generate a combined 2 million pounds of thrust at liftoff. With the boosters, total thrust at liftoff will exceed 8 million pounds!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
9 years ago

Exploring the Invisible: Magnetic Reconnection

People always say that space is a vacuum. That’s true – space is about a thousand times emptier than even the best laboratory vacuums on Earth. Even so, space contains lots of stuff we can’t see. We study this invisible space stuff because we need to understand it to safely send technology and astronauts into space.

The stuff that fills space is mostly plasma, which is gas where particles have separated into positive ions and negative electrons, creating a sea of electrically-charged particles. This plasma also contains something else – magnetic fields.

image

The particles in space can reach very high speeds, creating radiation. One of the main engines that drives that acceleration to high speeds is called magnetic reconnection. But what is magnetic reconnection?

Magnetic reconnection happens when two oppositely-aligned magnetic fields pinch together and explosively realign. As the lines snap into their new configuration – as in the animation below – the sudden change sends electrons and ions flying at incredible speeds.

image

Magnetic reconnection releases energy. We can't see the energy itself, but we can see the results: It can set off solar explosions – such as solar flares and coronal mass ejections – or disturbances near Earth that cause auroras.

image

In March 2015, we launched the four Magnetospheric Multiscale, or MMS, spacecraft on a mission to study magnetic reconnection. Magnetic reconnection only happens in a vacuum with ionized gas. These conditions are vanishingly rare on Earth, so we went to space to study this explosive process.

Because MMS has four separate – but essentially identical – spacecraft, it can watch magnetic reconnection in three dimensions.

image

The below animation shows what MMS sees – the magnetic fields are magenta, positive ions are purple, and electrons are yellow. The arrows show which the direction the fields and particles are moving.

image

Like how a research plane flies through a hurricane, MMS flew directly through a magnetic reconnection event in October 2015.

In the data visualization below, you can see the magnetic reconnection happening as the yellow arrows (which represent electrons) explode in all directions. You’ll notice that the magnetic field (represented by magenta arrows) changes direction after the magnetic reconnection, showing that the magnetic field has reconfigured.

image

Magnetic reconnection transfers energy into Earth’s atmosphere – but it’s not inherently dangerous. Sometimes, the changes in Earth’s magnetic field caused by magnetic reconnection can create electric currents that put a strain on power systems. However, the energy released is more often channeled into auroras, the multicolored lights that most often appear near the North and South Poles.

image

As the MMS mission continues the four spacecraft can be moved closer together or farther apart, letting us measure magnetic reconnection on all different scales. Each set of observations contributes to explaining different aspects of this invisible phenomenon of magnetic reconnection. Together, the information will help scientists better map out our space environment — crucial information as we journey ever farther beyond our home planet.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

What aspect of spaceflight always blows your mind, even after all this time?


Tags
8 years ago

Solar System: Things to Know This Week

Our solar system is huge, let us break it down for you. Here are a few things to know this week:

1. Up at Jupiter, It’s Down to Business

Solar System: Things To Know This Week

Ever since our Juno mission entered Jupiter's orbit on July 4, engineers and scientists have been busy getting their newly arrived spacecraft ready for operations. Juno's science instruments had been turned off in the days leading up to Jupiter orbit insertion. As planned, the spacecraft powered up five instruments on July 6, and the remaining instruments should follow before the end of the month. The Juno team has also scheduled a short trajectory correction maneuver on July 13 to refine the orbit.

2. The Shadows Know

Solar System: Things To Know This Week

Scientists with our Dawn mission have identified permanently shadowed regions on the dwarf planet Ceres. Most of these areas likely have been cold enough to trap water ice for a billion years, suggesting that ice deposits could exist there now (as they do on the planet Mercury). Dawn is looking into it.

3. Frosts of Summer

Solar System: Things To Know This Week

Some dusty parts of Mars get as cold at night year-round as the planet's poles do in winter, even in regions near the equator in summer, according to new findings based on Mars Reconnaissance Orbiter observations. The culprit may be Mars' ever-present dust.

4. Can You Hear Me Now?

Solar System: Things To Know This Week

The OSIRIS-REx spacecraft is designed to sample an asteroid and return that sample to Earth. After launch in Sept., the mission's success will depend greatly on its communications systems with Earth to relay everything from its health and status to scientific findings from the asteroid Bennu. That's why engineers from our Deep Space Network recently spent a couple of weeks performing detailed tests of the various communications systems aboard OSIRIS-REx.

5. Cometary Close-ups

Solar System: Things To Know This Week

The Rosetta spacecraft has taken thousands of photographs of Comet 67/P. The European Space Agency (ESA) is now regularly releasing the highest-resolution images. The word "stunning" is used a lot when referring to pictures from space—and these ones truly are. See the latest HERE.

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

How does it feel to take a walk in space?


Tags
7 years ago

Solar System: Things to Know This Week

Mark your calendars for summer 2018: That's when we're launching a spacecraft to touch the sun. 

In honor of our first-ever mission to the heart of the solar system, this week we’re delving into the life and times of this powerful yellow dwarf star.

image

1. Meet Parker 

Parker Solar Probe, our first mission to go to the sun, is named after Eugene Parker, an American astrophysicist who first theorized that the sun constantly sends out a flow of particles and energy called the solar wind. This historic mission will explore one of the last regions of the solar system to be visited by a spacecraft and help scientists unlock answers to questions they've been pondering for more than five decades.

image

2. Extra SPF, Please 

Parker Solar Probe will swoop within 4 million miles of the sun's surface, facing heat and radiation like no spacecraft before it. The mission will provide new data on solar activity to help us better understand our home star and its activity - information that can improve forecasts of major space-weather events that could impact life on Earth.

image

3. Majorly Massive 

The sun is the center of our solar system and makes up 99.8 percent of the mass of the entire solar system. If the sun were as tall as a typical front door, Earth would be about the size of a nickel.

4. Different Spin 

Since the sun is not a solid body, different parts of the sun rotate at different rates. At the equator, the sun spins once about every 25 days, but at its poles the sun rotates once on its axis every 36 Earth days.

image

5. Can't Stand on It

The sun is a star and a star doesn't have a solid surface. Rather, it's a ball of ionized gas 92.1% hydrogen (H2) and 7.8% helium (He) held together by its own gravity.

6. Center of Attention 

The sun isn't a planet, so it doesn't have any moons. But, the sun is orbited by eight planets, at least five dwarf planets, tens of thousands of asteroids, and hundreds of thousands to trillions of comets and icy bodies.

image

7. It's Hot in There 

And we mean really, really hot. The temperature at the sun's core is about 27 million degrees Fahrenheit. However, its atmosphere, the corona, can reach temperatures of 3 million degrees. (That's as if it got hotter the farther away you got from a fire, instead of cooler!) Parker Solar Probe will help scientists solve the mystery of why the corona's temperature is so much higher than the surface.

image

8. Travel Conditions

The sun influences the entire solar system, so studying it helps us better understand the space weather that our astronauts and spacecraft travel through.

9. Life on the Sun? 

Better to admire from afar. Thanks to its hot, energetic mix of gases and plasma, the sun can't be home to living things. However, we can thank the sun for making life on Earth possible by providing the warmth and energy that supply Earth’s food chain.

10. Chance of a Lifetime 

Last but not least, don't forget that the first total solar eclipse to sweep across the U.S. from coast-to-coast since 1918 is happening on August 21, 2017. Our toolkit has you need to know to about it. 

Want to learn more? Read our full list of the 10 things to know this week about the solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

Record Number of Americans Apply to #BeAnAstronaut

image

On Dec. 14, 2015, we announced that astronaut applications were open on USAJOBS. The window for applications closed on Feb. 18. We’re happy to announce that we have received more than 18,300 applications from excited individuals from around the country, all hoping to join the 2017 astronaut class. This surpasses the more than 6,100 received in 2012 for the most recent astronaut class, and the previous record - 8,000 applicants in 1978. 

image

So you applied to be an astronaut...now what?

Since the applications closed on Feb. 18, many people are curious to know…what’s next? Let us help you navigate the selection process:

image

Now that we have received all the applications, we will review them to determine the “Highly Qualified” applicants. This process will take place through summer 2016.

What is a “Highly Qualified” Applicant?

The diversity of experiences is what separates the highly qualified from qualified. Experience that demonstrates good leadership, fellowship and decision making are beneficial.

Between fall 2016 and spring 2017, interviewees will be brought to Johnson Space Center for evaluation. This process will help us determine the finalists, which takes place in spring 2017. 

Finally, in summer 2017, the Astronaut Candidate Class of 2017 is announced! These candidates will report to Johnson Space Center starting in August 2017. 

To view the full astronaut candidate selection process timeline, visit: http://astronauts.nasa.gov/content/timeline.htm

*Note that the high volume of applications received, dates in the timeline could be adjusted. 

Why do we need more astronauts?

image

We are continuing human spaceflight on the International Space Station, which has a continuous crew of six people on board. The Boeing and SpaceX commercial crew spacecraft that will travel to the station both have seats for four astronauts (the current Soyuz spacecraft, on which astronauts travel, only has three). This will add a seventh astronaut to the orbiting laboratory, and enable us to do more science!

How many astronauts will be selected?

The exact number will be determined by mission requirements, but current analysis shows about 8 - 14 astronauts will be needed. The final number will depend on updates to program plans, budgets, etc. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 years ago

12 Great Gifts from Astronomy

This is a season where our thoughts turn to others and many exchange gifts with friends and family. For astronomers, our universe is the gift that keeps on giving. We’ve learned so much about it, but every question we answer leads to new things we want to know. Stars, galaxies, planets, black holes … there are endless wonders to study.

In honor of this time of year, let’s count our way through some of our favorite gifts from astronomy.

Our first astronomical gift is … one planet Earth

So far, there is only one planet that we’ve found that has everything needed to support life as we know it — Earth. Even though we’ve discovered over 5,200 planets outside our solar system, none are quite like home. But the search continues with the help of missions like our Transiting Exoplanet Survey Satellite (TESS). And even you (yes, you!) can help in the search with citizen science programs like Planet Hunters TESS and Backyard Worlds.

This animated visualization depicts Earth rotating in front of a black background. Land in shades of tan and green lay among vast blue oceans, with white clouds swirling in the atmosphere. The image is watermarked with the text “Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio” and “visualization.”

Our second astronomical gift is … two giant bubbles

Astronomers found out that our Milky Way galaxy is blowing bubbles — two of them! Each bubble is about 25,000 light-years tall and glows in gamma rays. Scientists using data from our Fermi Gamma-ray Space Telescope discovered these structures in 2010, and we're still learning about them.

This image captures the majestic “Fermi bubbles” that extend above and below our Milky Way galaxy, set against the black background of space. A glowing blue line horizontally crosses the center of the image, showing our perspective from Earth of our galaxy’s spiral arms and the wispy clouds of material above and below it. Cloudy bubbles, colored deep magenta to represent Fermi’s gamma-ray vision, extend above and below the galactic plane. These bubbles are enormous, extending roughly half of the Milky Way's diameter and filling much of the top and bottom of the image. The image is watermarked “Credit: NASA/DOE/Fermi LAT Collaboration.”

Our third astronomical gift is … three types of black holes

Most black holes fit into two size categories: stellar-mass goes up to hundreds of Suns, and supermassive starts at hundreds of thousands of Suns. But what happens between those two? Where are the midsize ones? With the help of NASA’s Hubble Space Telescope, scientists found the best evidence yet for that third, in between type that we call intermediate-mass black holes. The masses of these black holes should range from around a hundred to hundreds of thousands of times the Sun’s mass. The hunt continues for these elusive black holes.

This cartoon depicts two black holes as birds, with a small one representing a stellar-mass black hole on the left and an enormous one representing a supermassive black hole on the right. These two birds appear on a tan background and flap their wings, and then a circle with three question marks pops up between them to represent the intermediate-mass black holes that scientists are hunting for. The image is watermarked “Credit: NASA’s Goddard Space Flight Center.”

Our fourth and fifth astronomical gifts are … Stephan’s Quintet

When looking at this stunning image of Stephan’s Quintet from our James Webb Space Telescope, it seems like five galaxies are hanging around one another — but did you know that one of the galaxies is much closer than the others? Four of the five galaxies are hanging out together about 290 million light-years away, but the fifth and leftmost galaxy in the image below — called NGC 7320 — is actually closer to Earth at just 40 million light-years away.

A group of five galaxies that appear close to each other in the sky: two in the middle, one toward the top, one to the upper left, and one toward the bottom. Four of the five appear to be touching. One is somewhat separated. In the image, the galaxies are large relative to the hundreds of much smaller (more distant) galaxies in the background. All five galaxies have bright white cores. Each has a slightly different size, shape, structure, and coloring. Scattered across the image, in front of the galaxies are a number of foreground stars with diffraction spikes: bright white points, each with eight bright lines radiating out from the center. The image is watermarked with the text “Credits: NASA, ESA, CSA, and STScI.”

Our sixth astronomical gift is … an eclipsing six-star system

Astronomers found a six-star system where all of the stars undergo eclipses, using data from our TESS mission, a supercomputer, and automated eclipse-identifying software. The system, called TYC 7037-89-1, is located 1,900 light-years away in the constellation Eridanus and the first of its kind we’ve found.

This diagram shows the sextuple star system TYC 7037-89-1, a group of six stars that interact with each other in complex orbits. The stars are arranged in pairs: System A, System B, and System C, each of which is shown as having one larger white star and one smaller yellow star. The two stars of System A, in the upper left, are connected by a red oval and labeled "1.3-day orbit." The two stars of System C, just below System A, are connected by a turquoise oval and labeled "1.6-day orbit." Additionally, these two systems orbit each other, shown as a larger blue oval connecting the two and labeled "A and C orbit every 4 years." On the other side of the image, in the bottom right, the two stars of System B are connected by a green oval and labeled "8.2-day orbit." Lastly, Systems A, B and C all interact with System B orbiting the combined A-C system, shown as a very large lilac oval labeled "AC and B orbit every 2,000 years." A caption at the bottom of the image notes, "Star sizes are to scale, orbits are not." The image is watermarked with the text “Illustration” and “Credit: NASA's Goddard Space Flight Center.”

Our seventh astronomical gift is … seven Earth-sized planets

In 2017, our now-retired Spitzer Space Telescope helped find seven Earth-size planets around TRAPPIST-1. It remains the largest batch of Earth-size worlds found around a single star and the most rocky planets found in one star’s habitable zone, the range of distances where conditions may be just right to allow the presence of liquid water on a planet’s surface.

Further research has helped us understand the planets’ densities, atmospheres, and more!

his animated image shows an artist's concept of the star TRAPPIST-1, an ultra-cool dwarf, and the seven Earth-size planets orbiting it. TRAPPIST-1 is large and glows bright orange, while the planets are smaller and in shades of cool gray-blue. The image is highly stylized to look like glowing balls sitting on a shiny surface, and neither the sizes nor distances are to scale. The planets closer to TRAPPIST-1 have droplets of water standing on the surface around them, indicating that they may have liquid water. Planets further away have frost around them, indicating that those are more likely to have significant amounts of ice, especially on the side that faces away from the star. Our view pans across the system, from the center outward, and faint tan rings depict the orbits of each planet. The image is watermarked with the text “Illustration” and “Credit: NASA/JPL-Caltech/R. Hurt (IPAC).”

Our eighth astronomical gift is … an (almost) eight-foot mirror

The primary mirror on our Nancy Grace Roman Space Telescope is approximately eight feet in diameter, similar to our Hubble Space Telescope. But Roman can survey large regions of the sky over 1,000 times faster, allowing it to hunt for thousands of exoplanets and measure light from a billion galaxies.

Side profile of a man standing in front of the Nancy Grace Roman Space Telescope Primary mirror. The man wears a long white coat, hair net, facemask, and glasses. The man is standing to the left of the mirror, and looking at it. The mirror faces the man, so it appears to be looking back at him. The mirror is a flat, smooth, silver disk with a black cylinder protruding from its center. Behind the mirror, a black square houses hardware for the mirror. The image is watermarked “Credit: NASA/Chris Gunn.”

Our ninth astronomical gift is … a kilonova nine days later

In 2017, the National Science Foundation (NSF)’s Laser Interferometer Gravitational-Wave Observatory (LIGO) and European Gravitational Observatory’s Virgo detected gravitational waves from a pair of colliding neutron stars. Less than two seconds later, our telescopes detected a burst of gamma rays from the same event. It was the first time light and gravitational waves were seen from the same cosmic source. But then nine days later, astronomers saw X-ray light produced in jets in the collision’s aftermath. This later emission is called a kilonova, and it helped astronomers understand what the slower-moving material is made of.

This animated illustration shows what happened in the nine days following a neutron star merger known as GW170817, detected on Aug. 17, 2017. In the first part of the animation, a pair of glowing blue neutron stars spiral quickly towards each other and merge with a bright flash. The merger creates gravitational waves (shown as pale arcs rippling out from the center), a near-light-speed jet that produced gamma rays (shown as brown cones and a rapidly-traveling magenta glow erupting from the center of the collision), and a donut-shaped ring of expanding blue debris around the center of the explosion. A variety of colors represent the many wavelengths of light produced by the kilonova, creating violet to blue-white to red bursts at the top and bottom of the collision. In the second part of the animation, we see the collision as it would appear from Earth, looking like a burst of red light in the lower left and a huge umbrella-shaped cascade of blue light in the upper right, representing X-rays.  The image is watermarked with the text “Credit: NASA's Goddard Space Flight Center/CI Lab” and “Illustration.”

Our tenth astronomical gift is … NuSTAR’s ten-meter-long mast

Our NuSTAR X-ray observatory is the first space telescope able to focus on high-energy X-rays. Its ten-meter-long (33 foot) mast, which deployed shortly after launch, puts NuSTAR’s detectors at the perfect distance from its reflective optics to focus X-rays. NuSTAR recently celebrated 10 years since its launch in 2012.

This animation shows an artist’s concept of the NuSTAR X-ray observatory orbiting above the blue marble of Earth and deploying its 10-meter-long (33 foot) mast shortly after launch in 2012. NuSTAR is roughly cylindrical, with a shiny silver covering and a pair of blue solar panels on each of its sides. As we pan around the spacecraft, silver scaffolding extends from inside, separating the ends of the telescope to the right distance to begin observing the universe in X-rays. The image is watermarked with the text “Illustration” and “Credit: Credit: NASA/JPL-Caltech.”

Our eleventh astronomical gift is … eleven days of observations

How long did our Hubble Space Telescope stare at a seemingly empty patch of sky to discover it was full of thousands of faint galaxies? More than 11 days of observations came together to capture this amazing image — that’s about 1 million seconds spread over 400 orbits around Earth!

This animated image zooms into the Hubble Ultra Deep Field, showing how a tiny patch of “empty” sky turned out to contain about 10,000 galaxies. The sequence begins with a starry backdrop, then we begin to zoom into the center of this image. As we travel, larger and brighter objects come into view, including dazzling spiral and elliptical galaxies in reds, oranges, blues, and purples. The image is watermarked with the text “Credit: NASA, G. Bacon and Z. Levay (STScI).”

Our twelfth astronomical gift is … a twelve-kilometer radius

Pulsars are collapsed stellar cores that pack the mass of our Sun into a whirling city-sized ball, compressing matter to its limits. Our NICER telescope aboard the International Space Station helped us precisely measure one called J0030 and found it had a radius of about twelve kilometers — roughly the size of Chicago! This discovery has expanded our understanding of pulsars with the most precise and reliable size measurements of any to date.

In this simulation of a pulsar’s magnetic fields, dozens of thin lines dance around a central gray sphere, which is the collapsed core of a dead massive star. Some of these lines, colored orange, form loops on the surface of the sphere. Others, colored blue, arc away from two spots on the lower half of the sphere and vanish into the black background. The image is watermarked with the text “Simulation” and “Credit: NASA's Goddard Space Flight Center.”

Stay tuned to NASA Universe on Twitter and Facebook to keep up with what’s going on in the cosmos every day. You can learn more about the universe here.

Make sure to follow us on Tumblr for your regular dose of space!


Tags
Loading...
End of content
No more pages to load
  • apolloexe
    apolloexe liked this · 2 weeks ago
  • pluviophiles-and-melomanie
    pluviophiles-and-melomanie liked this · 7 months ago
  • elhuronyyo
    elhuronyyo liked this · 8 months ago
  • iknowaladygoodandevil
    iknowaladygoodandevil liked this · 10 months ago
  • pemifolpe
    pemifolpe liked this · 1 year ago
  • dotglobal
    dotglobal liked this · 1 year ago
  • bluniper000
    bluniper000 liked this · 2 years ago
  • mrm7moud
    mrm7moud liked this · 2 years ago
  • sunnydaysinamusicalhaze
    sunnydaysinamusicalhaze reblogged this · 2 years ago
  • appla1
    appla1 reblogged this · 3 years ago
  • dudeyoushould
    dudeyoushould liked this · 3 years ago
  • xxgrasstastesbadxx
    xxgrasstastesbadxx reblogged this · 3 years ago
  • underw18er
    underw18er liked this · 3 years ago
  • bellaari
    bellaari liked this · 3 years ago
  • mermaidonsororityrow
    mermaidonsororityrow liked this · 3 years ago
  • chelsychacon
    chelsychacon liked this · 3 years ago
  • sunnydaysinamusicalhaze
    sunnydaysinamusicalhaze liked this · 3 years ago
  • apocalypsxdreams
    apocalypsxdreams liked this · 3 years ago
  • fancyengineerwolf
    fancyengineerwolf liked this · 3 years ago
  • almostvblue
    almostvblue liked this · 3 years ago
  • pinuspalustris
    pinuspalustris reblogged this · 3 years ago
  • cobbled-vibrance
    cobbled-vibrance liked this · 3 years ago
  • slylevi
    slylevi liked this · 3 years ago
  • cybernatedangel
    cybernatedangel liked this · 3 years ago
  • saltythexfilesindianjonescop
    saltythexfilesindianjonescop liked this · 3 years ago
  • thenewwavenyc
    thenewwavenyc reblogged this · 3 years ago
  • magpies-marble
    magpies-marble liked this · 3 years ago
  • rouse-modio
    rouse-modio liked this · 3 years ago
  • catyuy
    catyuy reblogged this · 3 years ago
  • swimmingharmonykryptonite
    swimmingharmonykryptonite reblogged this · 3 years ago
  • swimmingharmonykryptonite
    swimmingharmonykryptonite liked this · 3 years ago
  • stardust-wonder
    stardust-wonder liked this · 3 years ago
  • ohhhhnanaa
    ohhhhnanaa liked this · 3 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags