The Start Of Cassini’s Grand Finale

The Start of Cassini’s Grand Finale

Cue drumroll…

For the first time ever, our Cassini spacecraft dove through the narrow gap between Saturn and its rings on April 26. At 5 a.m. EDT, Cassini crossed the ring plane with its science instruments turned on and collecting data. 

image

During this dive, the spacecraft was not in contact with Earth. The first opportunity to regain contact with the spacecraft is expected around 3 a.m. EDT on April 27.

image

This area between Saturn and its rings has never been explored by a spacecraft before. What we learn from these daring final orbits will further our understanding of how giant planets, and planetary systems everywhere, form and evolve.

image

So, you might be asking…how did this spacecraft maneuver its orbit between Saturn and its rings? Well…let us explain!

On April 22, Cassini made its 127th and final close approach to Saturn’s moon Titan. The flyby put the spacecraft on course for its dramatic last act, known as the Grand Finale. 

image

As the spacecraft passed over Titan, the moon’s gravity bent its path, reshaping the robotic probe’s orbit slightly so that instead of passing just outside Saturn’s main rings, Cassini would begin a series of 22 dives between the rings and the planet.

image

With this assist, Cassini received a large increase in velocity of approximately 1,925 mph with respect to Saturn.

image

This final chapter of exploration and discovery is in many ways like a brand-new mission. Twenty-two times, the Cassini spacecraft will dive through the unexplored space between Saturn and its rings. What we learn from these ultra-close passes over the planet could be some of the most exciting revelations ever returned by the long-lived spacecraft.

image

Throughout these daring maneuvers, updates will be posted on social media at:

@CassiniSaturn on Twitter @NASAJPL on Twitter

Updates will also be available online at: https://saturn.jpl.nasa.gov/mission/grand-finale/milestones/ 

Follow along with us during this mission’s Grand Finale!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

8 years ago

What’s Up for November 2016

What’s Up for November: Venus at sunset, Jupiter at dawn, your last evening glimpse of Saturn until spring, and more meteors!

image

Through November 3, catch glimpses of a gibbous Venus, a crescent moon and ringed Saturn in the southwest sky just after sunset.

image

Wake up before sunrise every day this month to see Jupiter just above Spica, the brightest star in the constellation Virgo, shining in the east-southeast sky.

What’s Up For November 2016

Just before dawn on November 23-24, see the waning crescent moon just above Jupiter.

What’s Up For November 2016

November is a great time to see the constellation Ceres as it glides past Cetus, the Whale and you will be able to see the dwarf planet move relative to the background stars, but you’ll need a telescope for this one.

What’s Up For November 2016

This month, just like last month, there will be three meteor showers--the Northern Tuarids, the Leonids and the November Orionids.

What’s Up For November 2016

Watch the full November “What’s Up" video for more: 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Taking the Vital Signs of Mars

Does Mars have quakes? What is the temperature of the Red Planet? How did Mars even form? What can it tell us about how other rocky planets formed?

The Mars InSight lander is scheduled to launch in May 2018 to search for the answers to those questions.

Taking The Vital Signs Of Mars

InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) will conduct the first thorough “check-up” of Mars in more than 4.5 billion years, measuring its “pulse”, or seismic activity; its temperature; and its “reflexes” (the way the planet wobbles when it is pulled by the Sun and its moons).

How and Why?

image

By using sophisticated instruments – tools that can measure the vital signs of a planet – InSight will delve deep beneath the surface of Mars, detecting the clues left by the earliest stages of planetary formation.  

image

Previous Mars missions have explored the surface history of the Red Planet. Mars has been less geologically active than Earth, so it retains a more complete record of its history in its core, mantle and crust. InSight will study the sizes, densities and overall structure of the Red Planet’s core, mantle and crust. 

image

The lander will also measure the rate at which heat escapes from the planet’s interior, and provide glimpses into the evolutionary processes of all the rocky planets in our solar system, including Earth, and even those circling other stars!

image

Send Your Name to Mars!

image

You can send your name to Mars onboard the InSight lander! The deadline to get your Martian boarding pass is Nov. 1. To submit your name, visit: mars.nasa.gov/syn/insight

Learn more about Mars InSight HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

More Space...in Space

How do you create more space…in space? The Bigelow Expandable Activity Module (BEAM) is one solution to creating additional working space on the International Space Station.

image

BEAM will be deployed to its full size this Thursday, May 26, and begin its two-year technology demonstration attached to the space station. The astronauts aboard will first enter the habitat on June 2, and re-enter the module several times a year throughout the test period. While inside, they will retrieve sensor data and assess conditions inside the module.

image

Why Use an Expandable Habitat?

Expandable habitats are designed to take up less room on a spacecraft, but provide greater volume for living and working in space once expanded. This first test of an expandable module will allow investigators to gauge how well it performs and specifically, how well it protects against solar radiation, space debris and the temperature extremes of space.

image

BEAM launched April 8 aboard a SpaceX Dragon cargo spacecraft, and is an example of our increased commitment to partnering with industry to enable the growth of commercial use of space.

Get Involved!

More Space...in Space

During expansion, we will provide live Mission Control updates on NASA Television starting at 5:30 a.m. EDT on Thursday, May 26.

image

Make your own origaBEAMi!

image

To coincide with the expansion, here is a simple and fun activity called “origaBEAMi” that lets you build your own miniature inflatable BEAM module. Download the “crew procedures” HERE that contain step-by-step instructions on how to print and fold your BEAM module. You can also view a “how to” video HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
3 years ago

NASA Sees Our Ocean in Color. How About You?

Take a deep breath. Feel the oxygen in your lungs. We have the ocean to thank for that! Over long time scales, between 50 and 70 percent of our planet's oxygen is produced by microscopic organisms living in the ocean.

NASA Sees Our Ocean In Color. How About You?

Today is World Oceans Day! And as our planet’s climate continues to change, we want to understand how one of our biggest ecosystems is changing with it. Wondering how you can celebrate with NASA? We’ve got downloadable coloring pages and online coloring interactives to show how we study the ocean. Read on.

From Space to Sea

NASA Sees Our Ocean In Color. How About You?

Download ocean missions coloring page here Download Sentinel-6 Michael Freilich coloring page here

We use planes, boats, Earth-observing satellites and much more to study the ocean and partner with organizations all over the world. Here are a few examples:

From Sea

The Export Processes in the Ocean from Remote Sensing (EXPORTS) is one way we study the ocean from the sea to study changes in the ocean’s carbon cycle. In May, scientists and crew conducted research on three ships in the Northern Atlantic Ocean. They hope to create models to better understand climate change patterns.

From Space

Launched last year, the Sentinel-6 Michael Freilich spacecraft began a five-and-a-half-year prime mission to collect the most accurate data yet on global sea level and how our oceans are rising in response to climate change. Sentinel-6 Michael Freilich is just one of many satellites monitoring the ocean from space. Together with other Earth-observing spacecraft, the mission will also collect precise data of atmospheric temperature and humidity to help improve weather forecasts and climate models.

Finding Eddies

NASA Sees Our Ocean In Color. How About You?

Download Eddies Coloring Page The ocean is full of eddies – swirling water masses that look like hurricanes in the atmosphere. Eddies are often hot spots for biological activity that plays an important role in absorbing carbon. . We find eddies by looking for small changes in the height of the ocean surface, using multiple satellites continuously orbiting Earth. We also look at eddies up close, using ships and planes to study their role in the carbon cycle.

Monitoring Aerosols and Clouds

NASA Sees Our Ocean In Color. How About You?

Clouds coloring interactive here

Aerosols coloring interactive here

Tiny particles in the air called aerosols interact with clouds. These interactions are some of the most poorly understood components of Earth's climate system. Clouds and aerosols can absorb, scatter or reflect incoming radiation -- heat and light from the Sun -- depending on their type, abundance and locations in the atmosphere. We’re building new instruments to better understand aerosols and contribute to air quality forecasts.

The Ocean in Living Color Download PACE coloring page here

NASA Sees Our Ocean In Color. How About You?

The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will continue and greatly advance observations of global ocean color, biogeochemistry, and ecology, as well as Earth’s carbon cycle and atmospheric aerosols and clouds. It’s set to launch in late 2023 to early 2024. Want to learn more? Click here to see how PACE will collect data and here to see what PACE will see through our coloring interactives. (Make sure to check out the hidden surprises in both!)

Exploring Ocean Worlds on Earth and Beyond

Download Clouds coloring page here

NASA Sees Our Ocean In Color. How About You?

Using our understanding of oceans on Earth, we also study oceans on other planets. Mars, for example, contains water frozen in the ice caps or trapped beneath the soil. But there’s even more water out there. Planets and moons in our solar system and beyond have giant oceans on their surface. Saturn’s moon Enceladus is thought to have a massive ocean under its frozen surface, which sometimes sprays into space through massive fissures in the ice.

Learn more about ocean worlds here: nasa.gov/oceanworlds

Interested in learning more about how NASA studies oceans? Follow @NASAClimate, @NASAOcean and @NASAEarth.

You can also find all the coloring pages and interactives here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
4 years ago

Top 10 Things to Know for the Return of our Launch America Mission With SpaceX

image

History was made May 30 when NASA astronauts Robert Behnken and Douglas Hurley launched from American soil in a commercially built and operated American crew spacecraft on its way to the International Space Station. 

Pictured above is the SpaceX Dragon Endeavour spacecraft that lifted off on the company’s Falcon 9 rocket from Launch Complex 39A at Kennedy Space Center in Florida and docked with the space station on May 31. Now, Behnken and Hurley are ready to return home in Endeavour for a splashdown off the coast of Florida, closing out a mission designed to test SpaceX’s human spaceflight system, including launch, docking, splashdown, and recovery operations. Undocking is targeted for 7:34 p.m. ET on August 1, with splashdown back to Earth slated for 2:42 p.m. on August 2. Watch our continuous live coverage HERE. 

1. Where will Behnken and Hurley splash down?

image

Image: SpaceX’s Crew Dragon is guided by four parachutes as it splashes down in the Atlantic on March 8, 2019, after the uncrewed spacecraft's return from the International Space Station on the Demo-1 mission.

Together with SpaceX, we are capable of supporting seven splashdown sites off the coast of Florida. The seven potential splashdown sites for the Dragon Endeavor are off the coasts of Pensacola, Tampa, Tallahassee, Panama City, Cape Canaveral, Daytona, and Jacksonville.

2. How will a splashdown location be chosen?

Splashdown locations are selected using defined priorities, starting with selecting a station departure date and time with the maximum number of return opportunities in geographically diverse locations to protect for weather changes. Teams also prioritize locations which require the shortest amount of time between undocking and splashdown based on orbital mechanics, and splashdown opportunities that occur in daylight hours.

Check out the Departure and Splashdown Criteria Fact Sheet for an in-depth look at selecting return locations, decision points during return, and detailed weather criteria.

3. How long will it take for Behnken and Hurley to return to Earth?

image

Return time for Behnken and Hurley will vary depending on the undock and splashdown opportunities chosen, with the primary opportunity taking between six and 30 hours.

4. What does the return look like? What are the major milestones?

image

Crew Dragon’s return home will start with undocking from the International Space Station. At the time of undock, Dragon Endeavour and its trunk weigh approximately 27,600 pounds. We will provide live coverage of the return from undocking all the way through splashdown.

There will be two very small engine burns immediately after hooks holding Crew Dragon in place retract to actually separate the spacecraft from the station. Once flying free, Dragon Endeavour will autonomously execute four departure burns to move the spaceship away from the space station and begin the flight home. Several hours later, one departure phasing burn, lasting about six minutes, puts Crew Dragon on the proper orbital path to line it up with the splashdown zone.

Shortly before the final deorbit burn, Crew Dragon will separate from its trunk, which will burn up in Earth’s atmosphere. The spacecraft then executes the deorbit burn, which commits Crew Dragon to return and places it on an orbit with the proper trajectory for splashdown. After trunk separation and the deorbit burn are complete, the Crew Dragon capsule weighs approximately 21,200 pounds.  

5. How fast will Dragon Endeavour be going when it re-enters the Earth’s atmosphere? How hot will it get?

Crew Dragon will be traveling at orbital velocity prior to re-entry, moving at approximately 17,500 miles per hour. The maximum temperature it will experience on re-entry is approximately 3,500 degrees Fahrenheit. The re-entry creates a communications blackout between the spacecraft and Earth that is expected to last approximately six minutes.

6. When do the parachutes deploy?

image

Image: SpaceX’s final test of Crew Dragon’s Mark 3 parachute system on Friday, May 1, 2020, that will be used during the Demo-2 splashdwon mission. 

Dragon Endeavour has two sets of parachutes will that deploy once back inside Earth’s atmosphere to slow down prior to splashdown. Two drogue parachutes will deploy at about 18,000 feet in altitude while Crew Dragon is moving approximately 350 miles per hour. Four main parachutes will deploy at about 6,000 feet in altitude while Crew Dragon is moving approximately 119 miles per hour.

7. Who recovers the crew and the Dragon Endeavour capsule from the water? What vehicles and personnel are involved?

image

Image: SpaceX’s Crew Dragon is loaded onto the company’s recovery ship, Go Searcher, in the Atlantic Ocean, about 200 miles off Florida’s east coast, on March 8, after returning from the International Space Station on the Demo-1 mission.Credits: SpaceX

For splashdown at any of the seven potential sites, SpaceX personnel will be on location to recover the capsule from the water. Two recovery ships, the Go Searcher and the Go Navigator, split locations between the Gulf of Mexico and the Atlantic Ocean off the coast of Florida. On either ship will be more than 40 personnel from SpaceX and NASA, made up of spacecraft engineers, trained water recovery experts, medical professionals, the ship’s crew, NASA cargo experts, and others to assist in the recovery.

8. How long after splashdown until Behnken and Hurley are out of the capsule?

image

Image: NASA astronaut Doug Hurley, along with teams from NASA and SpaceX, rehearse crew extraction from SpaceX’s Crew Dragon, on August 13, 2019. Credits: NASA/Bill Ingalls

Immediately after splashdown has occurred, two fast boats with SpaceX personnel deploy from the main recovery ship. The first boat checks capsule integrity and tests the area around the Crew Dragon for the presence of any hypergolic propellant vapors. Once cleared, the personnel on the boats begin preparing the spaceship for recovery by the ship. The second fast boat is responsible for safing and recovering Crew Dragon’s parachutes, which have at this point detached from the capsule and are in the water.

At this point the main recovery vessel can move in and begin to hoist the Crew Dragon capsule onto the main deck. Once the capsule is on the recovery vessel, it is moved to a stable location for the hatch to be opened for waiting medical professionals to conduct initial checks and assist Behnken and Hurley out of Dragon Endeavour.

This entire process is expected to take approximately 45 to 60 minutes, depending on spacecraft and sea state conditions.

9. Where do Behnken and Hurley go after they are out of the capsule?

Immediately after exiting the Crew Dragon capsule, Behnken and Hurley will be assisted into a medical area on the recovery ship for initial assessment. This is similar to procedures when welcoming long-duration crew members returning home on Soyuz in Kazakhstan.

After initial medical checks, Behnken and Hurley will be returned to shore either by traveling on the primary recovery ship or by helicopter. Helicopter returns from the recovery ship are the baseline for all splashdown zones except for the Cape Canaveral splashdown site, with travel times ranging from approximately 10 minutes to 80 minutes. The distance from shore will be variable depending on the splashdown location, ranging from approximately 22 nautical miles to 175 nautical miles.

Once returned to shore, both crew members will immediately board a waiting NASA plane to fly back to Ellington field in Houston.

10. What happens next?

image

Image: NASA astronauts Shannon Walker, Victor Glover Jr. and Mike Hopkins and Japan’s Soichi Noguchi train in a SpaceX Crew Dragon capsule. Credit: SpaceX

Meanwhile, Dragon Endeavour will be returned back to the SpaceX Dragon Lair in Florida for inspection and processing. Teams will examine the data and performance of the spacecraft throughout the test flight to complete the certification of the system to fly operational missions for our Commercial Crew and International Space Station Programs. The certification process is expected to take about six weeks. Following successful certification, the first operational mission will launch with Crew Dragon commander Michael Hopkins, pilot Victor Glover, and mission specialist Shannon Walker – all of NASA – along with Japan Aerospace Exploration Agency (JAXA) mission specialist Soichi Noguchi will launch on the Crew-1 mission from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The four crew members will spend six months on the space station.

The launch is targeted for no earlier than late-September.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

5 Times Astronaut Jack Fischer Said Something in Space Was “Awesome”

Meet astronaut Jack Fischer…

image

He was selected as a NASA astronaut in July 2009, and is currently living and working in space for his first time. As you can imagine, going to space for the first time is both nerve-wracking and exciting. You may or may not know just how excited he actually is to be 250 miles above the Earth...To communicate his elation, he has frequently used some version of the word “awesome”.

FYI, that’s a picture of Fischer about to eat a coffee ball on station. For more on his opinion of coffee balls, check THIS out.

Let’s take a look at a few times astronaut Jack Fischer said something in space was “awesome”…

1. Burrito Smothered in Awesomesauce 

Immediately following the hatch opening to the International Space Station and Jack Fischer arriving at his new orbital home, they had the chance to speak to their families. During this time, he explained to his wife what it was like to be in space...obviously using the word awesome in the process: “It’s a burrito of awesomeness, smothered in awesomesauce baby, it’s so beautiful!”

2. Awesome Views from Space

image

Astronauts commonly say that one of the best parts of being on space station is the view. Earth from 250 miles above can look stunning...or as Fischer puts it...awesome!

3. Tornado of Awesomeness 

Fischer shared this video on his Twitter account on May 6 saying, “Sometimes, on a weekend, you have to spin about wildly…we can call it a tornado of awesomeness—because weightlessness is awesome!”

4. Awesome #SpaceSelfie

image

This selfie, taken during Fischer’s first-ever spacewalk is AWESOME and shows his cheesing smile from behind his spacesuit helmet. Check out a recap of Fischer’s first spacewalk, conducted on May 12, HERE. 

5. Fondue Pot Bubbling Over with Awesome Sauce

In this video, also taken during Fischer’s first spacewalk on May 12, you can hear his real-time reaction to seeing the Earth from outside the space station. Describing it like a “Ginormous fondue pot, bubbling over with piping hot awesomesauce.”

Why the Burrito References?

image

You might be wondering where all this burrito talk comes from. In a pre-flight interview, Fischer explained that he doesn’t particularly like sweets...so for his birthday, his wife will commonly make him bean burritos smothered in green chili and cheese! Watch the full video for 5 facts you may not know about Fischer HERE.

Want more awesomeness from Jack Fischer? Follow him on social media for regular, awesome updates!

Twitter | Facebook | Instagram

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Solar System: 10 Things to Know This Week

Week of March 5: Great Shots Inspiring views of our solar system and beyond

1-Mars-By-Numbers

image

“The first TV image of Mars, hand colored strip-by-strip, from Mariner 4 in 1965. The completed image was framed and presented to JPL director, William H. Pickering. Truly a labor of love for science!” -Kristen Erickson, NASA Science Engagement and Partnerships Director

2-Night Life

image

“There are so many stories to this image. It is a global image, but relates to an individual in one glance. There are stories on social, economic, population, energy, pollution, human migration, technology meets science, enable global information, etc., that we can all communicate with similar interests under one image.” -Winnie Humberson, NASA Earth Science Outreach Manager

3-Pale Blue Dot

image

“Whenever I see this picture, I wonder...if another species saw this blue dot what would they say and would they want to discover what goes on there...which is both good and bad. However, it would not make a difference within the eternity of space—we’re so insignificant...in essence just dust in the galactic wind—one day gone forever.”

-Dwayne Brown, NASA Senior Communications Official

4-Grand Central

image

“I observed the Galactic Center with several X-ray telescopes before Chandra, including the Einstein Observatory and ROSAT. But the Chandra image looks nothing like those earlier images, and it reminded me how complex the universe really is. Also I love the colors.” -Paul Hertz, Director, NASA Astrophysics Division

5-Far Side Photobomb

image

“This image from the Deep Space Climate Observatory (DSCOVR) satellite captured a unique view of the Moon as it moved in front of the sunlit side of Earth in 2015. It shows a view of the farside of the Moon, which faces the Sun, that is never directly visible to us here on Earth. I found this perspective profoundly moving and only through our satellite views could this have been shared.” -Michael Freilich, Director NASA Earth Science Division

6-”Shocking, Exciting and Wonderful”

image

“Pluto was so unlike anything I could imagine based on my knowledge of the Solar System. It showed me how much about the outer solar system we didn’t know. Truly shocking, exciting and wonderful all at the same time.” -Jim Green, Director, NASA Planetary Science Division

7-Slices of the Sun

image

“This is an awesome image of the Sun through the Solar Dynamic Observatory’s many filters. It is one of my favorites.” - Peg Luce, Director, NASA Heliophysics Division (Acting)

8-Pluto’s Cold, Cold Heart

image

“This high-resolution, false color image of Pluto is my favorite. The New Horizons flyby of Pluto on July 14, 2015 capped humanity’s initial reconnaissance of every major body in the solar system. To think that all of this happened within our lifetime! It’s a reminder of how privileged we are to be alive and working at NASA during this historic era of space exploration.” - Laurie Cantillo, NASA Planetary Science Public Affairs Officer

9-Family Portrait

image

“The Solar System family portrait, because it is a symbol what NASA exploration is really about: Seeing our world in a new and bigger way.” - Thomas H. Zurbuchen, Associate Administrator, NASA Science Mission Directorate

10-Share Your Favorite Space Shots

image

Tag @NASASolarSystem on your favorite social media platform with a link to your favorite image and few words about why it makes your heart thump.

Check out the full version of this article HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.   


Tags
6 years ago

Global Temperature by the Numbers

The Year

4th Hottest

2018 was the fourth hottest year since modern recordkeeping began. NASA and the National Oceanic and Atmospheric Administration work together to track temperatures around the world and study how they change from year to year. For decades, the overall global temperature has been increasing.

image

Over the long term, world temperatures are warming, but each individual year is affected by things like El Niño ocean patterns and specific weather events.

1.5 degrees

Globally, Earth’s temperature was more than 1.5 degrees Fahrenheit warmer than the average from 1951 to 1980.

image

The Record

139 years

Since 1880, we can put together a consistent record of temperatures around the planet and see that it was much colder in the late-19th century. Before 1880, uncertainties in tracking global temperatures were too large. Temperatures have increased even faster since the 1970s, the result of increasing greenhouse gases in the atmosphere.

image

Five Hottest

The last five years have been the hottest in the modern record.

image

6,300 Individual Observations

Scientists from NASA use data from 6,300 weather stations and Antarctic research stations, together with ship- and buoy-based observations of sea surface temperatures to track global temperatures.

image

The Consequences

605,830 swimming pools

As the planet warms, polar ice is melting at an accelerated rate. The Greenland and Antarctic ice sheets lost about 605,830 Olympic swimming pools (400 billion gallons) of water between 1993 and 2016.

image

8 inches

Melting ice raises sea levels around the world. While ice melts into the ocean, heat also causes the water to expand. Since 1880, sea levels around the world have risen approximately 8 inches.

image

71,189 acres burned

One symptom of the warmer climate is that fire seasons burn hotter and longer. In 2018, wildfires burned more than 71,189 acres in the U.S. alone.

image

46% increase in CO2 levels

CO2 levels have increased 46 percent since the late 19th Century, which is a dominant factor causing global warming.

image

Tags
8 years ago

10 Space & Football Facts You Probably Didn’t Know

There are more connections between space and football than you may have originally thought. Here are a few examples of how...

1. The International Space Station and a football field are basically the same size

image

Yes, that’s right! The International Space Station measures 357 feet end-to-end. That’s almost equivalent to the length of a football field including the end zones (360 feet).

2. It would take over 4,000 footballs to fill the Orion spacecraft

image

Our Orion spacecraft is being designed to carry astronauts to deep space destinations, like Mars! It will launch atop the most powerful rocket ever built, the Space Launch System rocket. If you were to fill the Orion spacecraft with footballs instead of crew members, you would fit a total of 4,625!

3. Our new Space Launch System rocket is taller than a football field is long

image

We’re building the most powerful rocket ever, the Space Launch System. At its full height it will stand 384 feet – 24 feet taller than a football field is long.

4. The crew living on space station will see the day begin and end…twice…during the Super Bowl

image

An average NFL game lasts more than three hours. Traveling at 17,500 mph, the crew on the space station will see two sunrises and two sunsets in that time…they see 16 sunrises and sunsets each day!

5. Playing football on Mars would be…lighter

image

On Mars, a football would weigh less than half a pound, while a 200-pund football player would weigh just about 75 pounds.

6. It would take over 3,000 hours for a football to reach the Moon

image

Talk about going long…if you threw a football to the Moon at 60 mph, the average speed of an NFL pass, it would take 3,982 hours, or 166 days, to get there. The quickest trip to the Moon was the New Horizons probe, which zipped pass the Moon in just 8 hours 35 minutes on its way to Pluto 

7. The longest field goal kick in history would’ve been WAY easier to make on Mars

image

The longest field goal kick in NFL history is 64 yards. On Mars, at 1/3 the gravity of Earth, that same field goal, ignoring air resistance, could have been made from almost two football fields away (192 yards).

8. A quarterback would be able to throw even further on Mars

image

Aerodynamic drag doesn’t happen on Mars. With a very thin atmosphere and low gravity to drag the ball down, a quarterback could throw the football three times as far as he could on Earth. A receiver would have to be much further down the field to catch the throw 

9. Football players and astronauts both need to exercise every day

image

Football players must be quick and powerful, honing the physical skills necessary for their unique positions. In space, maintaining physical fitness is a top priority, since astronauts will lose bone and muscle mass if they do not keep up their strength and conditioning.

10. Clear team communication is important on the football field AND in space

image

During football games, calling plays and relaying information from coaches on the sidelines or in the booth to players on the field is essential. Coaches communicate directly with quarterbacks and a defensive player between plays via radio frequencies. They must have a secure and reliable system that keeps their competitors from listening in and also keeps loud fan excitement from drowning out what can be heard. Likewise, reliable communication with astronauts in space and robotic spacecraft exploring far into the solar system is key to our mission success.

A radio and satellite communications network allows space station crew members to talk to the ground-based team at control centers, and for those centers to send commands to the orbital complex.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Our Spacecraft Have Discovered a New Magnetic Process in Space

Just as gravity is one key to how things move on Earth, a process called magnetic reconnection is key to how electrically-charged particles speed through space. Now, our Magnetospheric Multiscale mission, or MMS, has discovered magnetic reconnection – a process by which magnetic field lines explosively reconfigure – occurring in a new and surprising way near Earth.

image

Invisible to the eye, a vast network of magnetic energy and particles surround our planet — a dynamic system that influences our satellites and technology. The more we understand the way those particles move, the more we can protect our spacecraft and astronauts both near Earth and as we explore deeper into the solar system.

image

Earth’s magnetic field creates a protective bubble that shields us from highly energetic particles that stream in both from the Sun and interstellar space. As this solar wind bathes our planet, Earth’s magnetic field lines get stretched. Like elastic bands, they eventually release energy by snapping and flinging particles in their path to supersonic speeds.

image

That burst of energy is generated by magnetic reconnection. It’s pervasive throughout the universe — it happens on the Sun, in the space near Earth and even near black holes.

image

Scientists have observed this phenomenon many times in Earth’s vast magnetic environment, the magnetosphere. Now, a new study of data from our MMS mission caught the process occurring in a new and unexpected region of near-Earth space. For the first time, magnetic reconnection was seen in the magnetosheath — the boundary between our magnetosphere and the solar wind that flows throughout the solar system and one of the most turbulent regions in near-Earth space.

image

The four identical MMS spacecraft — flying through this region in a tight pyramid formation — saw the event in 3D. The arrows in the data visualization below show the hundreds of observations MMS took to measure the changes in particle motion and the magnetic field.

image

The data show that this event is unlike the magnetic reconnection we’ve observed before. If we think of these magnetic field lines as elastic bands, the ones in this region are much smaller and stretchier than elsewhere in near-Earth space — meaning that this process accelerates particles 40 times faster than typical magnetic reconnection near Earth. In short, MMS spotted a completely new magnetic process that is much faster than what we’ve seen before.

image

What’s more, this observation holds clues to what’s happening at smaller spatial scales, where turbulence takes over the process of mixing and accelerating particles. Turbulence in space moves in random ways and creates vortices, much like when you mix milk into coffee. The process by which turbulence energizes particles in space is still a big area of research, and linking this new discovery to turbulence research may give insights into how magnetic energy powers particle jets in space.

Keep up with the latest discoveries from the MMS mission: @NASASun on Twitter and Facebook.com/NASASunScience.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
Loading...
End of content
No more pages to load
  • majesticleon
    majesticleon liked this · 1 year ago
  • onedynamicdream
    onedynamicdream liked this · 3 years ago
  • just-stuff
    just-stuff reblogged this · 3 years ago
  • sergioballester-blog
    sergioballester-blog liked this · 4 years ago
  • chimetime54
    chimetime54 liked this · 4 years ago
  • pencilmelted39
    pencilmelted39 liked this · 4 years ago
  • lostinallthis
    lostinallthis reblogged this · 4 years ago
  • class42warship
    class42warship liked this · 4 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags