It’s Black Friday, but for us, it’s the annual Black Hole Friday! Today, we’ll post awesome images and information about black holes.
A black hole is a place in space where gravity pulls so much that even light cannot get out. The gravity is so strong because matter has been squeezed into a tiny space…sort of like all of those shoppers trying to fit into the department stores today.
Because no light can get out, you can’t see black holes with the naked eye. Space telescopes with special tools help find black holes (similar to how those websites help you discover shopping deals).
How big are black holes? Black holes can be large or small…just like the lines in all of the stores today. Scientists think the smallest black holes are as small as just one atom. These black holes are very tiny but have the mass of a large mountain!
So how do black holes form? Scientists think the smallest black holes formed when the universe began. Stellar black holes are made when the center of a very big star collapses. When this happens, it causes a supernova.
A supernova is an exploding star that blasts part of its mass into space.
Supermassive black holes are an altogether different story. Scientists think they were made at the same time as the galaxy they in they reside. Supermassive black holes, with their immense gravitational pull, are notoriously good at clearing out their immediate surroundings by eating nearby objects.
When a star passes within a certain distance of a black hole, the stellar material gets stretched and compressed -- or "spaghettified" -- as the black hole swallows it. A black hole destroying a star, an event astronomers call "stellar tidal disruption," releases an enormous amount of energy, brightening the surroundings in an event called a flare. In recent years, a few dozen such flares have been discovered.
Then there are ultramassive black holes, which are found in galaxies at the centers of massive galaxy clusters containing huge amounts of hot gas.
Get more fun facts and information about black holes.
Follow us on social media.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
NASA astronaut Scott Kelly hosted a Reddit Ask Me Anything on Jan. 23 where people, well, asked him anything.
Kelly answered a range of questions from whether the crew members play space pranks on one another ("Occasionally…" Kelly said without elaboration.) to whether Kelly's recovery plan will be different than normal ("I think my rehab plan is the same as if I were here for 6 months, but I'm not positive.").
To start off, here are a few quick facts we learned about Kelly during the AMA:
The advice he would've given himself before going into space on day 1 would be to pack lighter.
His favorite David Bowie song is "Modern Love," and his favorite non-space related movie is "The Godfather."
He uses a Nikon D4 when taking pictures (camera settings and lenses vary).
He thought it was cool to watch the movie "Gravity" while he was on the space station, because that's where the movie took place.
Once he lands, Kelly will miss the challenge of being aboard the space station the most.
What’s the creepiest thing you’ve encountered while on the job?
Could a rogue spaceship sneak up on the space station?
We finally got an answer for one thing so many of you have been curious about…why does Scott Kelly always fold his arms?
When astronauts go up to space, they experience something very few others have and see Earth from a very unique perspective. What’s one thing Kelly will do differently once he returns home?
Kelly also told one user something unusual about being in space that people normally don’t think about: feet calluses.
Another user wanted to know what the largest societal misconception about space/space travel is. According to Kelly, it has nothing to do with science.
To read the entire Reddit AMA with Kelly, visit his IAmA thread.
Kelly's #YearInSpace ends Mar. 2. Follow him until the end of the journey (and beyond) on Twitter, Instagram and Facebook.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
“At a glacial pace” used to mean moving so slowly the movement is almost imperceptible. Lately though, glaciers are moving faster. Ice on land is melting and flowing, sending water to the oceans, where it raises sea levels.
In 2018, we launched the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) to continue a global record of ice elevation. Now, the results are in. Using millions of measurements from a laser in space and quite a bit of math, researchers have confirmed that Earth is rapidly losing ice.
ICESat-2 was a follow-up mission to the original ICESat, which launched in 2003 and took measurements until 2009. Comparing the two records tells us how much ice sheets have lost over 16 years.
During those 16 years, melting ice from Antarctica and Greenland was responsible for just over a half-inch of sea level rise. When ice on land melts, it eventually finds its way to the ocean. The rapid melt at the poles is no exception.
One gigaton of ice holds enough water to fill 400,000 Olympic swimming pools. It’s also enough ice to cover Central Park in New York in more than 1,000 feet of ice.
Between 2003 and 2019, Greenland lost 200 gigatons of ice per year. That’s 80 million Olympic swimming pools reaching the ocean every year, just from Greenland alone.
During the same time period, Antarctica lost 118 gigatons of ice per year. That’s another 47 million Olympic swimming pools every year. While there has been some elevation gain in the continent’s center from increased snowfall, it’s nowhere near enough to make up for how much ice is lost to the sea from coastal glaciers.
ICESat-2 sends out 10,000 pulses of laser light a second down to Earth’s surface and times how long it takes them to return to the satellite, down to a billionth of a second. That’s how we get such precise measurements of height and changing elevation.
These numbers confirm what scientists have been finding in most previous studies and continue a long record of data showing how Earth’s polar ice is melting. ICESat-2 is a key tool in our toolbox to track how our planet is changing.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Earlier this year, we hosted a Game Changing Technology Industry Day for the aerospace industry, and in October our engineers and technologists visited Capitol Hill showcasing some of these exciting innovations. Check out these technology developments that could soon be making waves on Earth and in space.
With smartwatches, glasses, and headsets already captivating users around the world, it’s no surprise that the next evolution of wearable technology could be used by first responders at the scene of an accident or by soldiers on a battlefield. The Integrated Display and Environmental Awareness System (IDEAS) is an interactive optical computer that works for smart glasses.
It has a transparent display, so users have an unobstructed view even during video conferences or while visualizing environmental data.
And while the IDEAS prototype is an innovative solution to the challenges of in-space missions, it won’t just benefit astronauts -- this technology can be applied to countless fields here on Earth.
Before astronauts can venture to Mars and beyond, we need to significantly upgrade our life support systems. The Next Generation Life Support project is developing technologies to allow astronauts to safely carry out longer duration missions beyond low-Earth orbit.
The Variable Oxygen Regulator will improve the control of space suit pressure, with features for preventing decompression sickness. The Rapid Cycle Amine technology will remove carbon dioxide and humidity and greatly improve upon today’s current complex system.
New Advanced Manufacturing Technologies (AMT), such as 3-D printing, can help us build rocket parts more quickly and aid in building habitats on other planets.
These manufacturing initiatives will result in innovative, cost-efficient solutions to many of our planetary missions. Back in 2014, the International Space Station’s 3-D printer manufactured the first 3-D printed object in space, paving the way to future long-term space expeditions.
The object, a printhead faceplate, is engraved with names of the organizations that collaborated on this space station technology demonstration: NASA and Made In Space, Inc., the space manufacturing company that worked with us to design, build and test the 3-D printer.
Large spacecraft entering the atmosphere of Mars will be traveling over five times the speed of sound, exposing the craft to extreme heat and drag forces. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is designed to protect spacecraft from this environment with an inflatable structure that helps slow a craft for landing.
To get astronauts and other heavy loads to the surface safely, these components must be very strong. The inflatable consists of a material 15 times stronger than steel, while the thermal protection system can withstand temperatures over 1600°C.
For the Convective Heating Improvement for Emergency Fire Shelters (CHIEFS) project, we partnered with the U.S. Forest Service to develop safer, more effective emergency fire shelters for wild land firefighters.
Using existing technology for flexible spacecraft heat shields like HIAD, we are building and testing new fire shelters composed of stacks of durable, insulated materials that could help protect the lives of firefighters.
Real life is looking a bit more like science fiction as Human Robotics Systems are becoming highly complex. They are amplifying human productivity and reducing mission risk by improving the effectiveness of human-robot teams.
Our humanoid assistant Robonaut is currently aboard the International Space Station helping astronauts perform tasks.
A fleet of robotic spacecraft and rovers already on and around Mars is dramatically increasing our knowledge and paving the way for future human explorers. The Mars Science Laboratory Curiosity rover measured radiation on the way to Mars and is sending back data from the surface.
This data will help us plan how to protect the astronauts who will explore Mars.
Future missions like the Mars 2020 rover, seeking signs of past life, will demonstrate new technologies that could help astronauts survive on the Red Planet.
Currently, a satellite that is even partially damaged cannot be fixed in orbit. Instead, it must be disposed of, which is a lot of potential science lost.
Satellite Servicing technologies would make it possible to repair, upgrade, and even assemble spacecraft in orbit using robotics.
This can extend the lifespan of a mission, and also enable deeper space exploration.
Restore-L, set to launch in 2020, is a mission that will demonstrate the ability to grab and refuel a satellite.
Small satellites, or smallsats, are quickly becoming useful tools for both scientists and industry. However, the high cost of spacecraft avionics—the systems that guide and control the craft—often limits how and when smallsats can be sent into orbit by tagging along as payloads on larger launches.
Using Affordable Vehicle Avionics (AVA) technology, we could launch many more small satellites using an inexpensive avionics controller. This device is smaller than a stack of six CD cases and weighs less than two pounds!
After a JPL research team of modern-day alchemists set about mixing their own alloys, they discovered that a glass made of metal had the wear resistance of a ceramic, was twice as strong as titanium, and could withstand the extreme cold of planetary surfaces, with temperatures below -150 degrees Fahrenheit.
Bulk Metallic Glass (BMG) gears would enable mechanisms to function without wasting energy on heaters. Most machines need to maintain a warmer temperature to run smoothly, which expends precious fuel and decreases the mission’s science return.
By developing gearboxes made of BMG alloys, we can extend the life of a spacecraft and learn more about the far reaches of our solar system than ever before. Plus, given their extremely high melting points, metallic glasses can be cheaply manufactured into parts by injection molding, just like plastics.
Cryogenic propellant tanks are essential for holding fuel for launch vehicles like our Space Launch System—the world’s most powerful rocket. But the current method for building these tanks is costly and time-consuming, involving almost a mile of welded parts.
Advanced Near Net Shape Technology, part of our Advanced Manufacturing Technologies, is an innovative manufacturing process for constructing cryotanks, using cylinders that only have welds in one area.
This makes the tank lighter, cheaper, and safer for astronauts, as there are fewer potentially defective welds.
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:
Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.
Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”
There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.
The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.
Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.
The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet.
The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.
Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.
Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.
You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
When we talk about the enormity of the cosmos, it’s easy to toss out big numbers – but far harder to wrap our minds around just how large, how far and how numerous celestial bodies like exoplanets – planets beyond our solar system – really are.
So. How big is our Milky Way Galaxy?
We use light-time to measure the vast distances of space.
It’s the distance that light travels in a specific period of time. Also: LIGHT IS FAST, nothing travels faster than light.
How far can light travel in one second? 186,000 miles. It might look even faster in metric: 300,000 kilometers in one second. See? FAST.
How far can light travel in one minute? 11,160,000 miles. We’re moving now! Light could go around the Earth a bit more than 448 times in one minute.
Speaking of Earth, how long does it take light from the Sun to reach our planet? 8.3 minutes. (It takes 43.2 minutes for sunlight to reach Jupiter, about 484 million miles away.) Light is fast, but the distances are VAST.
In an hour, light can travel 671 million miles. We’re still light-years from the nearest exoplanet, by the way. Proxima Centauri b is 4.2 light-years away. So… how far is a light-year? 5.8 TRILLION MILES.
A trip at light speed to the very edge of our solar system – the farthest reaches of the Oort Cloud, a collection of dormant comets way, WAY out there – would take about 1.87 years.
Our galaxy contains 100 to 400 billion stars and is about 100,000 light-years across!
One of the most distant exoplanets known to us in the Milky Way is Kepler-443b. Traveling at light speed, it would take 3,000 years to get there. Or 28 billion years, going 60 mph. So, you know, far.
SPACE IS BIG.
Read more here: go.nasa.gov/2FTyhgH
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s Small Business Week! To celebrate, we’re breaking down the process and explaining how YOUR small business can work with us. Here are 10 steps:
Prior to working with us, identify which of your products or services best fit within our industry. It’s also important to know the Federal Supply Class or Service Codes (FSC/SVC) for your products or services. Prepare a capability brief in both printed and electronic versions with an emphasis on Government work.
In order to register your business with us, there are three systems you’ll need to use. The Data Universal Numbering System (DUNS), the System for Award Management (SAM) and the NASA Vendor Data Base (NVDB). After you’ve survived all those acronyms, your business is registered!
Here at NASA we have centers around the country that each procure different types of business. Where does your product or service fit in? The best thing to do is visit THIS site and find out more about each center. You can also take a look at our Acquisition Forecast to find out about expected contract opportunities.
You can find current procurement opportunities in your product or service area by checking the Federal Business Opportunities website. This site also helps you identify our requirements and even send you e-mail notifications of released requirements.
Contracting procedures can be tedious, it’s always a good idea to familiarize yourself with the Federal Acquisition Regulations (FAR), as well as our supplement to those regulations. Which can be found HERE.
Did you know that many of our purchases are orders on the Federal Supply Schedule contracts? They are, which means you can contact the U.S. General Services Administration (GSA) for information on how to obtain a contract.
There are some very beneficial resources available to you throughout this process. You can request training and counseling on marketing, financial and contracting issues at minimal or no cost from Procurement Technical Assistance Centers (PTACs).
You also have the option to consult with the SBA’s Procurement Center Representatives (PCRs) and the SBA Business Development Centers. The SBA provides each of our centers with a liaison.
There is also an option to get free and confidential mentoring by former CEOs through SCORE.
Direct contracting is not the only route for small businesses. Consider subcontracting opportunities, and get information through the SBA’s SUB-Net or Subcontracting Opportunities Directory. Solicitations or notices are posted by prime contractors. Our list of prime vendors is located on our Marshall Space Flight Center’s website.
Explore other small business programs, such as our Mentor-Protégé Program, the Small Business Innovation Research Program and the Historically Black Colleges and Universities and Minority-Serving Institutions Program. Information on these and other programs is available on our Office of Small Business Programs website.
After you have identified your customers, researched their requirements and familiarized yourself with our procurement regulations and strategies, it’s time to market your product or service. Present your capabilities directly to the NASA Centers that buy your products or services. Realize that, as with yours, their time is valuable. If the match is a good one, you can provide them with a cost-effective, quality solution to their requirements. Good luck!
Dynetics Technical Services, Inc., of Huntsville, AL works with us on enterprise information technology services so that we have the right tools to reach for new heights. This company was also named Agency Small Business Prime Contractor of the Year.
Arcata Associates, Inc., of Las Vegas, NV manages operations and maintenance for our Dryden Aeronautical Test Range in Edwards, CA. Their work ensures that we can continue our critical work in aviation research and development. This company was even named Agency Small Business Subcontractor of the Year.
Want to learn more about our Office of Small Business Programs? Visit their site HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
do you have a favourite planet etc?
This nebula began forming about 10,000 years ago when a dying star started flinging material into space. When Sun-like stars exhaust their nuclear fuel, they become unstable and blast their outer layers of gas away into space (bad news for any planets in the area). This Hubble Space Telescope image shows a snapshot of the unworldly process.
Streams of high-energy ultraviolet radiation cause the expelled material to glow, creating a beautiful planetary nebula — a term chosen for the similarity in appearance to the round disk of a planet when viewed through a small telescope.
The Eskimo Nebula got its nickname because it resembles a face surrounded by a fur parka. The “parka” is a disk of material embellished by a ring of comet-shaped objects with their tails streaming away from the central, dying star. In the middle of the nebula is a bubble of material that is being blown outward by the star’s intense “wind” of high-speed material.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This International Women’s Day join us in celebrating the women whose grit, ingenuity and talent drives us forward in our mission to boldly expand frontiers in air and space. Thank you for pushing boundaries, serving as role models and shaping space, science and discovery every day!
The women at NASA are making history everyday! Keep up with their work and learn more about their stories, HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Tired of singing the same holiday songs? Here’s a celestial take on the classic Rudolph the Red Nose Reindeer that you can introduce to your friends and family.
(Three infrared wavelength ranges were placed into the three color channels (red, green and blue, respectively) to create this false color Christmas portrait.)
Sung to the tune of Rudolph the Red Nosed Reindeer
Intro You know Mercury, Venus and Earth and Mars, too Jupiter, Saturn, Uranus, and Neptune But do you recall the most famous Solar System body of all
Verse 1 Pluto the small dwarf planet Has a very shiny glow And if you had discovered it Your name might be Clyde Tombaugh
Verse 2 All of the other planets used to laugh and call him names They never let poor Pluto join in planetary games
Verse 3 Then one fateful summer eve New Horizons came to say “Pluto with your heart so bright Won’t you let me flyby tonight?”
Verse 4 Then all the planets loved him and they shouted out with glee, “NASA!” Pluto the small dwarf planet You’ll go down in history!
(repeat V3 and V4)
This song was written by Andres Almeida, a NASA employee, for a holiday office party. It’s a fun take on the classic Rudolph the Red Nosed Reindeer, with a NASA spin. Enjoy!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts