7 Sports Astronauts Love Without Gravity (Including Football)

7 Sports Astronauts Love Without Gravity (Including Football)

Astronauts onboard the International Space Station spend most of their time doing science, exercising and maintaining the station. But they still have time to shoot hoops and toss around a football.

From chess to soccer, there’s a zero-gravity spin to everything.

1. Baseball

image
image
image

Baseball: America’s favorite pastime. JAXA astronaut, Satoshi Furukawa shows us how microgravity makes it possible to be a one-man team. It would be a lot harder to hit home runs if the players could jump that high to catch the ball.

2. Chess

image

Yes, it’s a sport, and one time NASA astronaut Greg Chamitoff (right) played Earth on a Velcro chess board. An elementary school chess team would pick moves that everyone could vote for online. The winning move would be Earth’s play, and then Chamitoff would respond. About every two days, a move would be made. But who won the historic Earth vs. Space match? Earth! Chamitoff resigned after Earth turned its pawn into a queen, but it was game well played.

3. Soccer

image
image

NASA astronaut Steve Swanson put a new spin on soccer by juggling the ball upside down. However, he might not have considered himself upside down. On the space station, up and down are relative.

4. Gymnastics

image

NASA astronauts usually sign off their videos with a zero-gravity somersault (either forwards or backwards). But astronauts are also proficient in handstands, flips and twists. The predecessor to the International Space Station, the Skylab, had the best space for the moves. The current space station is a bit tight in comparison.

5. Basketball

image

Objects that aren’t heavy don’t move very well on the space station. They kind of just float. It’s like Earth, but exaggerated. For example, on Earth a beach ball wouldn’t go as far as a basketball. The same is true in space, which is why playing with a basketball in space is more fun than playing with a beach ball.

6. Golf

image

People talk about hitting golf balls off skyscrapers, but what about off the International Space Station? While golf isn’t a normal occurrence on the station, it’s been there. One golf company even sent an experiment to the station to find out how to make better golf clubs.

7. Football

image

Zero gravity doesn’t make everything easier. Astronauts need to relearn how to throw things because their brains need to relearn how to interpret sensory information. A bowling ball on the space station no longer feels as heavy as a bowling ball on Earth. When astronauts first throw things on the space station, everything keeps going too high. That would put a wrench in your spiral for a couple of months. But once you adjust, the perfect spiral will just keep spiraling!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

6 years ago

What’s Up For September 2018?

Outstanding views Venus, Jupiter, Saturn and Mars with the naked eye!

image

You'll have to look quickly after sunset to catch Venus. And through binoculars or a telescope, you'll see Venus's phase change dramatically during September - from nearly half phase to a larger thinner crescent!

image

Jupiter, Saturn and Mars continue their brilliant appearances this month. Look southwest after sunset.

image

Use the summer constellations help you trace the Milky Way.

image

Sagittarius: where stars and some brighter clumps appear as steam from the teapot.

image

Aquila: where the Eagle's bright Star Altair, combined with Cygnus's Deneb, and Lyra's Vega mark the Summer Triangle. 

image

Cassiopeia, the familiar "w"- shaped constellation completes the constellation trail through the Summer Milky Way. Binoculars will reveal double stars, clusters and nebulae. 

image

Between September 12th and the 20th, watch the Moon pass from near Venus, above Jupiter, to the left of Saturn and finally above Mars! 

image

Both Neptune and brighter Uranus can be spotted with some help from a telescope this month.

What’s Up For September 2018?

Look at about 1:00 a.m. local time or later in the southeastern sky. You can find Mercury just above Earth's eastern horizon shortly before sunrise. Use the Moon as your guide on September 7 and 8th.

What’s Up For September 2018?

And although there are no major meteor showers in September, cometary dust appears in another late summer sight, the morning Zodiacal light. Try looking for it in the east on moonless mornings very close to sunrise. To learn more about the Zodiacal light, watch "What's Up" from March 2018.

What’s Up For September 2018?

Watch the full What’s Up for September Video: 

There are so many sights to see in the sky. To stay informed, subscribe to our What’s Up video series on Facebook.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
2 months ago
Dolphins X Astronauts: The Collab We Didn't Know We Needed 
Dolphins X Astronauts: The Collab We Didn't Know We Needed 
Dolphins X Astronauts: The Collab We Didn't Know We Needed 
Dolphins X Astronauts: The Collab We Didn't Know We Needed 

Dolphins x Astronauts: The collab we didn't know we needed 

A pod of curious dolphins added extra meaning and porpoise to the recovery of Crew-9′s SpaceX Dragon capsule and its four explorers shortly after splashdown. Inside the capsule were astronauts Nick Hague, Suni Williams, Butch Wilmore, and cosmonaut Aleksandr Gorbunov, who splashed down off the coast of Florida at 5:57pm ET (2127 UTC) on March 18, 2025, concluding their scientific mission to the International Space Station. See Crew-9 return from deorbit to splashdown in this video. (The dolphins appear at 1:33:56.)


Tags
5 years ago

Celebrating Spitzer, One of NASA’s Great Observatories

As the Spitzer Space Telescope’s 16-year mission ends, we’re celebrating the legacy of our infrared explorer. It was one of four Great Observatories – powerful telescopes also including Hubble, Chandra and Compton – designed to observe the cosmos in different parts of the electromagnetic spectrum.

Light our eyes can see

The part of the spectrum we can see is called, predictably, visible light. But that’s just a small segment of all the wavelengths of the spectrum. The Hubble Space Telescope observes primarily in the visible spectrum. Our Chandra X-ray Observatory is designed to detect (you guessed it) X-ray emissions from very hot regions of the universe, like exploded stars and matter around black holes. Our Compton Gamma Ray Observatory, retired in 2000, produced the first all-sky survey in gamma rays, the most energetic and penetrating form of light.

Celebrating Spitzer, One Of NASA’s Great Observatories

Then there’s infrared…

Infrared radiation, or infrared light, is another type of energy that we can't see but can feel as heat. All objects in the universe emit some level of infrared radiation, whether they're hot or cold. Spitzer used its infrared instrument to make discoveries in our solar system (including Saturn's largest ring) all the way to the edge of the universe. From stars being born to planets beyond our solar system (like the seven Earth-size exoplanets around the star TRAPPIST-1), Spitzer's science discoveries will continue to inspire the world for years to come.

Celebrating Spitzer, One Of NASA’s Great Observatories

Multiple wavelengths

Together, the work of the Great Observatories gave us a more complete view and understanding of our universe.

Celebrating Spitzer, One Of NASA’s Great Observatories

Hubble and Chandra will continue exploring our universe, and next year they’ll be joined by an even more powerful observatory … the James Webb Space Telescope!

Celebrating Spitzer, One Of NASA’s Great Observatories

Many of Spitzer's breakthroughs will be studied more precisely with the Webb Space Telescope. Like Spitzer, Webb is specialized for infrared light. But with its giant gold-coated beryllium mirror and nine new technologies, Webb is about 1,000 times more powerful. The forthcoming telescope will be able to push Spitzer's science findings to new frontiers, from identifying chemicals in exoplanet atmospheres to locating some of the first galaxies to form after the Big Bang.

We can’t wait for another explorer to join our space telescope superteam!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

AI, Cancer Therapy and Chemical Gardens Headed to Space Station

A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. The spacecraft will deliver science that studies the use of artificial intelligence, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. 

Take a look at five investigations headed to space on the latest SpaceX resupply:

image

Credits: DLR

As we travel farther into space, the need for artificial intelligence (AI) within a spacecraft increases.

image

Credits: DLR

Mobile Companion, a European Space Agency (ESA) investigation, explores the use of AI as a way to mitigate crew stress and workload during long-term spaceflight.

image

Credits: DLR

Plants regulate their temperature by releasing water through tiny pores on their leaves. If they have sufficient water they can maintain their temperature, but if water is insufficient their temperatures rise. This temperature rise can be measured with a sensor in space.

image

Credits: NASA/JPL-Caltech

ECOSTRESS measures the temperature of plants and uses that information to better understand how much water plants need and how they respond to stress.

image

Credits: Northwestern University

Spaceflight has an on impact many bodily systems. Rodent Research-7 takes a look at how the microgravity environment of space affects the community of microoganisms in the gastrointestinal tract, or microbiota.

The study also evaluates relationships between system changes, such as sleep-wake cycle disruption, and imbalance of microbial populations, to identify contributing factors and supporting development of countermeasures to protect astronaut health during long-term missions, as well as to improve the treatment of gastrointestinal, immune, metabolic and sleep disorders on Earth.

image

Credits: Angiex

Cardiovascular diseases and cancer are the leading causes of death in developed countries. Angiex Cancer Therapy examines whether microgravity-cultured endothelial cells represent a valid in vitro model to test effects of vascular-targeted agents on normal blood vessels.

Results may create a model system for designing safer drugs, targeting the vasculature of cancer tumors and helping pharmaceutical companies design safer vascular-targeted drugs.

image

Credits: Oliver Steinbock chemistry group at Florida State University

Chemical Gardens are structures that grow during the interaction of metal salt solutions with silicates, carbonates or other selected anions. Their growth characteristics and attractive final shapes form from a complex interplay between reaction-diffusion processes and self-organization.

image

Credits: Oliver Steinbock chemistry group at Florida State University

On Earth, gravity-induced flow due to buoyancy differences between the reactants complicates our understanding of the physics behind these chemical gardens. Conducting this experiment in a microgravity environment ensures diffusion-controlled growth and allows researchers a better assessment of initiation and evolution of these structures.

These investigations join hundreds of others currently happening aboard the orbiting laboratory. 

For daily updates, follow @ISS_Research, Space Station Research and Technology News or our Facebook. For opportunities to see the space station pass over your town, check out Spot the Station.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
1 year ago
In this multiwavelength image, the central object resembles a semi-transparent, spinning toy top in shades of purple and magenta against a black background. The top-like structure appears to be slightly falling toward the right side of the image. At its center is a bright spot. This is the pulsar that powers the nebula. A stream of material is spewing forth from the pulsar in a downward direction, constituting what would be the part of a top that touches a surface while it is spinning. Wispy purple light accents regions surrounding the object. This image combines data from NASA's Chandra, Hubble, and Spitzer telescopes. Credit: X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech

Navigating Deep Space by Starlight

On August 6, 1967, astrophysicist Jocelyn Bell Burnell noticed a blip in her radio telescope data. And then another. Eventually, Bell Burnell figured out that these blips, or pulses, were not from people or machines.

This photograph shows astrophysicist Jocelyn Bell Burnell smiling into a camera. She is wearing glasses, a pink collared shirt, and a black cardigan. She is holding a yellow pencil above a piece of paper with a red line across it. There is a tan lampshade and several books in the background. The image is watermarked “Copyright: Robin Scagell/Galaxy Picture Library.”

The blips were constant. There was something in space that was pulsing in a regular pattern, and Bell Burnell figured out that it was a pulsar: a rapidly spinning neutron star emitting beams of light. Neutron stars are superdense objects created when a massive star dies. Not only are they dense, but neutron stars can also spin really fast! Every star we observe spins, and due to a property called angular momentum, as a collapsing star gets smaller and denser, it spins faster. It’s like how ice skaters spin faster as they bring their arms closer to their bodies and make the space that they take up smaller.

This animation depicts a distant pulsar blinking amidst a dark sky speckled with colorful stars and other objects. The pulsar is at the center of the image, glowing purple, varying in brightness and intensity in a pulsating pattern. As the camera pulls back, we see more surrounding objects, but the pulsar continues to blink. The image is watermarked “Artist’s concept.” Credit: NASA’s Goddard Space Flight Center

The pulses of light coming from these whirling stars are like the beacons spinning at the tops of lighthouses that help sailors safely approach the shore. As the pulsar spins, beams of radio waves (and other types of light) are swept out into the universe with each turn. The light appears and disappears from our view each time the star rotates.

A small neutron star spins at the center of this animation. Two purple beams of light sweep around the star-filled sky, emanating from two spots on the surface of the neutron star, and one beam crosses the viewer’s line of sight with a bright flash. The image is watermarked “Artist’s concept.” Credit: NASA's Goddard Space Flight Center.

After decades of studying pulsars, astronomers wondered—could they serve as cosmic beacons to help future space explorers navigate the universe? To see if it could work, scientists needed to do some testing!

First, it was important to gather more data. NASA’s NICER, or Neutron star Interior Composition Explorer, is a telescope that was installed aboard the International Space Station in 2017. Its goal is to find out things about neutron stars like their sizes and densities, using an array of 56 special X-ray concentrators and sensitive detectors to capture and measure pulsars’ light.

This time-lapse of our Neutron star Interior Composition Explorer (NICER) shows how it scans the skies to study pulsars and other X-ray sources from its perch aboard the International Space Station. NICER is near the center of the image, a white box mounted on a platform with a shiny panel on one side and dozens of cylindrical mirrors on the opposite side. Around it are other silver and white instruments and scaffolding. NICER swivels and pans to track objects, and some other objects nearby move as well. The station’s giant solar panels twist and turn in the background. Movement in the sequence, which represents a little more than one 90-minute orbit, is sped up by 100 times. Credit: NASA.

But how can we use these X-ray pulses as navigational tools? Enter SEXTANT, or Station Explorer for X-ray Timing and Navigation Technology. If NICER was your phone, SEXTANT would be like an app on it.  

During the first few years of NICER’s observations, SEXTANT created an on-board navigation system using NICER’s pulsar data. It worked by measuring the consistent timing between each pulsar’s pulses to map a set of cosmic beacons.

This photo shows the NICER payload on the International Space Station. Against a black background, tall rectangular solar panels that appear as a golden mesh rise from the bottom of the photo, passing through its middle area. In front of that are a variety of gray and white shapes that make up instruments and the structure of the space station near NICER. Standing above from them, attached to a silver pole, is the rectangular box of the NICER telescope, which is pointing its concentrators up and to the right. Credit: NASA.

When calculating position or location, extremely accurate timekeeping is essential. We usually rely on atomic clocks, which use the predictable fluctuations of atoms to tick away the seconds. These atomic clocks can be located on the ground or in space, like the ones on GPS satellites. However, our GPS system only works on or close to Earth, and onboard atomic clocks can be expensive and heavy. Using pulsar observations instead could give us free and reliable “clocks” for navigation. During its experiment, SEXTANT was able to successfully determine the space station’s orbital position!

A photo of the International Space Station as seen from above. The left and right sides of the image are framed by the station's long, rectangular solar panels, with a complex array of modules and hardware in the middle. The background is taken up fully by the surface of the Earth; lakes, snow-capped mountains, and a large body of water are faintly visible beneath white clouds. Credit: NASA

We can calculate distances using the time taken for a signal to travel between two objects to determine a spacecraft’s approximate location relative to those objects. However, we would need to observe more pulsars to pinpoint a more exact location of a spacecraft. As SEXTANT gathered signals from multiple pulsars, it could more accurately derive its position in space.

This animation shows how triangulating the distances to multiple pulsars could help future space explorers determine their location. In the first sequence, the location of a spaceship is shown in a blue circle in the center of the image against a dark space background. Three pulsars, shown as spinning beams of light, appear around the location. They are circled in green and then connected with dotted lines. Text on screen reads “NICER data are also used in SEXTANT, an on-board demonstration of pulsar-based navigation.” The view switches to the inside of a futuristic spacecraft, looking through the windshield at the pulsars. An illuminated control panel glows in blues and purples. On-screen text reads “This GPS-like technology may revolutionize deep space navigation through the solar system and beyond.” Credit: NASA’s Johnson Space Center

So, imagine you are an astronaut on a lengthy journey to the outer solar system. You could use the technology developed by SEXTANT to help plot your course. Since pulsars are reliable and consistent in their spins, you wouldn’t need Wi-Fi or cell service to figure out where you were in relation to your destination. The pulsar-based navigation data could even help you figure out your ETA!

NASA’s Space Launch System (SLS) rocket carrying the Orion spacecraft launched on the Artemis I flight test. With Artemis I, NASA sets the stage for human exploration into deep space, where astronauts will build and begin testing the systems near the Moon needed for lunar surface missions and exploration to other destinations farther from Earth. This image shows a SLS rocket against a dark, evening sky and clouds of smoke coming out from the launch pad. This is all reflected on the water in the foreground of the photo. Credit: NASA/Bill Ingalls

None of these missions or experiments would be possible without Jocelyn Bell Burnell’s keen eye for an odd spot in her radio data decades ago, which set the stage for the idea to use spinning neutron stars as a celestial GPS. Her contribution to the field of astrophysics laid the groundwork for research benefitting the people of the future, who yearn to sail amongst the stars.  

Keep up with the latest NICER news by following NASA Universe on X and Facebook and check out the mission’s website. For more on space navigation, follow @NASASCaN on X or visit NASA’s Space Communications and Navigation website.  

Make sure to follow us on Tumblr for your regular dose of space!


Tags
7 years ago
What Caused This Outburst Of This Star Named V838 Mon? For Reasons Unknown, This Star’s Outer Surface

What caused this outburst of this star named V838 Mon? For reasons unknown, this star’s outer surface suddenly greatly expanded with the result that it became the brightest star in the entire Milky Way Galaxy in January 2002. Then, just as suddenly, it faded. A stellar flash like this had never been seen before – supernovas and novas expel matter out into space.

Although the V838 Mon flash appears to expel material into space, what is seen in the above GIF from the Hubble Space Telescope is actually an outwardly moving light echo of the bright flash.

In a light echo, light from the flash is reflected by successively more distant rings in the complex array of ambient interstellar dust that already surrounded the star. V838 Mon lies about 20,000 light years away toward the constellation of the unicorn (Monoceros), while the light echo above spans about six light years in diameter.

Credit: NASA, ESA

To discover more, visit: https://www.nasa.gov/multimedia/imagegallery/image_feature_2472.html


Tags
5 years ago

A Wrinkle in Space-Time: The Eclipse That “Proved” Einstein Right

One hundred years ago a total solar eclipse turned an obscure scientist into a household name. You might have heard of him — his name is Albert Einstein. But how did a solar eclipse propel him to fame?

First, it would be good to know a couple things about general relativity. (Wait, don’t go! We’ll keep this to the basics!)

image

A decade before he finished general relativity, Einstein published his special theory of relativity, which demonstrates how space and time are interwoven as a single structure he dubbed “space-time.” General relativity extended the foundation of special relativity to include gravity. Einstein realized that gravitational fields can be understood as bends and curves in space-time that affect the motions of objects including stars, planets — and even light.

For everyday situations the centuries-old description of gravity by Isaac Newton does just fine. However, general relativity must be accounted for when we study places with strong gravity, like black holes or neutron stars, or when we need very precise measurements, like pinpointing a position on Earth to within a few feet. That makes it hard to test!

image

A prediction of general relativity is that light passing by an object feels a slight "tug", causing the light's path to bend slightly. The more mass the object has, the more the light will be deflected. This sets up one of the tests that Einstein suggested — measuring how starlight bends around the Sun, the strongest source of gravity in our neighborhood. Starlight that passes near the edge of the Sun on its way to Earth is deflected, altering by a small amount where those stars appear to be. How much? By about the width of a dime if you saw it at a mile and a quarter away! But how can you observe faint stars near the brilliant Sun? During a total solar eclipse!

image

That’s where the May 29, 1919, total solar eclipse comes in. Two teams were dispatched to locations in the path of totality — the places on Earth where the Moon will appear to completely cover the face of the Sun during an eclipse. One team went to South America and another to Africa.

On eclipse day, the sky vexed both teams, with rain in Africa and clouds in South America. The teams had only mere minutes of totality during which to take their photographs, or they would lose the opportunity until the next total solar eclipse in 1921! However, the weather cleared at both sites long enough for the teams to take images of the stars during totality.

image

The teams took two sets of photographs of the same patch of sky – one set during the eclipse and another set a few months before or after, when the Sun was out of the way. By comparing these two sets of photographs, researchers could see if the apparent star positions changed as predicted by Einstein. This is shown with the effect exaggerated in the image above.

A few months after the eclipse, when the teams sorted out their measurements, the results demonstrated that general relativity correctly predicted the positions of the stars. Newspapers across the globe announced that the controversial theory was proven (even though that’s not quite how science works). It was this success that propelled Einstein into the public eye.

image

The solar eclipse wasn’t the first test of general relativity. For more than two centuries, astronomers had known that Mercury’s orbit was a little off. Its perihelion — the point during its orbit when it is closest to the Sun — was changing faster than Newton’s laws predicted. General relativity easily explains it, though, because Mercury is so close to the Sun that its orbit is affected by the Sun’s dent in space-time, causing the discrepancy.  

In fact, we still test general relativity today under different conditions and in different situations to see whether or not it holds up. So far, it has passed every test we’ve thrown at it.

Curious to know where we need general relativity to understand objects in space? Tune into our Tumblr tomorrow to find out!

image

You can also read more about how our understanding of the universe has changed during the past 100 years, from Einstein's formulation of gravity through the discovery of dark energy in our Cosmic Times newspaper series.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Around the World in Seven Ground Stations

Happy Birthday, Jules Verne!

image

Considered by many to be the father of science fiction, French novelist Jules Verne takes his readers on a “From the Earth to the Moon,” “Twenty Thousand Leagues Under the Sea” and “Around the World in Eighty Days.” In his honor, let’s take our own journey around the world, exploring seven far-flung ground stations and the communications networks they support. These ground stations downlink data from science and exploration missions, maintaining the critical link from space to ground.

image

Our Deep Space Network supports far-out missions like Voyager 1, a spacecraft that's now over 13 billion miles from Earth. To communicate that far, the Network uses antennas as large as 230 feet in diameter. The network has ground stations in Pasadena, California; Madrid, Spain; and this one in Canberra, Australia. The ground stations are strategically placed for maximum coverage of the night sky, ensuring that deep space missions can communicate their data back to Earth. Check out that lizard!

image

Our Space Network uses relay satellites in conjunction with ground stations to provide continuous communications coverage for satellites in low-Earth orbit like the International Space Station, enabling 24/7 connection with astronauts onboard. Spacecraft using the Space Network beam their data to the constellation of Tracking and Data Relay Satellites, which forward that data to the ground. This is a photo of a Space Network ground station in Guam, a U.S. territory. The spherical structures around the antennas are called “radomes” and protect the antennas from the tropical storms!

image

Optical communications uses lasers to provide missions with higher data rates than radio communications. Optical terminals also offer missions reduced size, weight and power requirements over comparable radio antennas. A smaller system leaves more room for science instruments, a weight reduction can mean a less expensive launch and reduced power allows batteries to last longer. This ground station in Haleakalā, Hawaii, will relay data to California through a groundbreaking optical communications satellite, the Laser Communications Relay Demonstration. The demonstration will show the power and promise of optical communications to support the next generation of science missions.

image

Antarctica may seem like an odd place for radio antennas, but McMurdo Ground Station is vitally important to our networks. In 2017, we used the McMurdo ground station to demonstrate a new technology called Disruption Tolerant Networking (DTN), sending a selfie from McMurdo to the space station through numerous DTN nodes. DTN protocols allow data to be stored at points along its route that do not have an open connection to the next intermediary, preventing data loss and improving data returns.

image

This Near Earth Network ground station in Santiago, Chile, might not be our only South American ground station for long. The Near Earth Network is considering Punta Arenas, Chile, as a possible location for Ka-band antennas, which would provide missions with higher data rates. The Near Earth Network is also experimenting with Ka-band arraying, which uses multiple smaller antennas to provide the same capabilities of a larger, Ka-band antenna. Ka-band services will greatly increase the amount of science data we can gather!

image

If the space station ever has communications trouble, we could communicate with our astronauts through emergency very high frequency (VHF) communications ground stations like this one in Wallops Island, Virginia. VHF offers voice-only, contingency communications for the station and the Soyuz spacecraft, which ferries astronauts to and from the station. We maintain two VHF stations strategically placed to maximize contact with the space station as it orbits above North America. International partners operate VHF stations that provide contacts as the station orbits above Asia and Europe. NASA’s segment of the VHF network recently underwent critical upgrades that improve the reliability and durability of the system.

image

This beautiful photo captures Near Earth Network antennas in Svalbard, Norway, beneath the glow of the Northern lights, a phenomenon that occurs when charged particles from the Sun interact with various gasses in Earth’s atmosphere. If one were to visit Iceland, one could see these same lights above Snæfellsjökull volcano, featured in Jules Verne’s “A Journey to the Center of the Earth” as the imaginary entrance to a subterranean world.

A lot has changed in the nearly two centuries since Jules Verne was born. Verne’s 1865 novel “From the Earth to the Moon” and its 1870 sequel “Around the Moon” imagine a giant cannon capable of launching three men into lunar orbit. These imaginary astronauts used opera glasses to survey the lunar surface before returning safely to Earth.

Such a story may seem ridiculous in an age where humanity has occupied space for decades and satellites explore distant worlds with increasing regularity, but Verne’s dreams of spaceflight were novel ­– if not revolutionary – at the time. This change in worldview reflects humanity’s inexorable technological progress and our mission at NASA to turn science fiction into science fact.

As the next generation of exploration commences, our ever-evolving communications capabilities rise to meet the demands of missions that dreamers like Verne could hardly imagine.

The seven ground stations featured here were just a taste of our communications infrastructure. To learn more about space communications, visit: https://www.nasa.gov/SCaN


Tags
5 years ago
Say Hello To The Butterfly Nebula 👋

Say hello to the Butterfly Nebula 👋

It looks like our Hubble Space Telescope captured an image of a peaceful, cosmic butterfly unfurling its celestial wings, but the truth is vastly more violent. In the Butterfly Nebula, layers of gas are being ejected from a dying star. Medium-mass stars grow unstable as they run out of fuel, which leads them to blast tons of material out into space at speeds of over a million miles per hour!

Streams of intense ultraviolet radiation cause the cast-off material to glow, but eventually the nebula will fade and leave behind only a small stellar corpse called a white dwarf. Our middle-aged Sun can expect a similar fate once it runs out of fuel in about six billion years.

Planetary nebulas like this one aren’t actually related to planets; the term was coined by astronomer William Herschel, who actually discovered the Butterfly Nebula in 1826. Through his small telescope, planetary nebulas looked like glowing, planet-like orbs. While stars that generate planetary nebulas may have once had planets orbiting them, scientists expect that the fiery death throes these stars undergo will ultimately leave any planets in their vicinity completely uninhabitable.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago
From The Vantage Point Of The International Space Station, Astronaut Shane Kimbrough (@astro_kimbrough)

From the vantage point of the International Space Station, astronaut Shane Kimbrough (@astro_kimbrough) captured this image over the Earth, writing “Looking west over the Red Sea, Saudi Arabia and Egypt.  #EarthArt from the amazing space station.”

The space station serves as the world's laboratory for conducting cutting-edge microgravity research, and is the primary platform for technology development and testing in space to enable human and robotic exploration of destinations beyond low-Earth orbit, including asteroids and Mars.

Loading...
End of content
No more pages to load
  • iichiniisaaaanaol
    iichiniisaaaanaol liked this · 5 years ago
  • enraged-amoebas
    enraged-amoebas reblogged this · 5 years ago
  • djkmutt-blog
    djkmutt-blog reblogged this · 6 years ago
  • saki101
    saki101 liked this · 7 years ago
  • jurakan
    jurakan reblogged this · 8 years ago
  • leareverdy
    leareverdy reblogged this · 8 years ago
  • andromesia
    andromesia liked this · 8 years ago
  • nautical-nautilus-blog
    nautical-nautilus-blog liked this · 9 years ago
  • jsbustaman
    jsbustaman liked this · 9 years ago
  • relieved-egg
    relieved-egg liked this · 9 years ago
  • princepluto
    princepluto liked this · 9 years ago
  • galaxy-cosplay
    galaxy-cosplay liked this · 9 years ago
  • siamesedre4m
    siamesedre4m liked this · 9 years ago
  • fallerartist-blog
    fallerartist-blog liked this · 9 years ago
  • whispers-between-worlds
    whispers-between-worlds reblogged this · 9 years ago
  • elwynwanderer
    elwynwanderer reblogged this · 9 years ago
  • raspberrybluejeans
    raspberrybluejeans liked this · 9 years ago
  • foxjevilwild
    foxjevilwild liked this · 9 years ago
  • dontturnoutthelights
    dontturnoutthelights liked this · 9 years ago
  • enterprisie
    enterprisie liked this · 9 years ago
  • celtic-romulan
    celtic-romulan reblogged this · 9 years ago
  • celtic-romulan
    celtic-romulan liked this · 9 years ago
  • whimsicalentropy
    whimsicalentropy liked this · 9 years ago
  • aurumcalendula
    aurumcalendula reblogged this · 9 years ago
  • aurumcalendula
    aurumcalendula liked this · 9 years ago
  • tinsnip
    tinsnip reblogged this · 9 years ago
  • charlesdarwininthetardis
    charlesdarwininthetardis reblogged this · 9 years ago
  • dragonengine
    dragonengine reblogged this · 9 years ago
  • nasanerd09
    nasanerd09 reblogged this · 9 years ago
  • maemorris221
    maemorris221 liked this · 9 years ago
  • adeerable-warlock
    adeerable-warlock reblogged this · 9 years ago
  • chaoticpeace10
    chaoticpeace10 reblogged this · 9 years ago
  • portconmaine
    portconmaine reblogged this · 9 years ago
  • hansolotheviciousbear
    hansolotheviciousbear liked this · 9 years ago
  • cocmohabt-blog
    cocmohabt-blog liked this · 9 years ago
  • foggytravelerstrawberry-blog
    foggytravelerstrawberry-blog liked this · 9 years ago
  • mikeandrewphillips
    mikeandrewphillips reblogged this · 9 years ago
  • richyboy3-blog
    richyboy3-blog reblogged this · 9 years ago
  • richyboy3-blog
    richyboy3-blog liked this · 9 years ago
  • littlemismonster-blog
    littlemismonster-blog reblogged this · 9 years ago
  • littlemismonster-blog
    littlemismonster-blog liked this · 9 years ago
  • johnwatsons-potato
    johnwatsons-potato liked this · 9 years ago
  • thelittleghostbehindyou
    thelittleghostbehindyou reblogged this · 9 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags